Browse > Article
http://dx.doi.org/10.4014/jmb.2108.08034

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis  

Moon, Keumok (Microbiological Resource Research Institute, Pusan National University)
Lee, Seola (Department of Microbiology, Pusan National University)
Park, Hyunsu (Department of Microbiology, Pusan National University)
Cha, Jaeho (Microbiological Resource Research Institute, Pusan National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.12, 2021 , pp. 1692-1700 More about this Journal
Abstract
Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.
Keywords
Amylosucrase; bioavailability; antioxidant activity; melanogenesis; resveratrol; enzymatic glycosylation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. 2006. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 70: 1386-1394.   DOI
2 Park HJ, Lee EH, Jung HY, Kang IK, Cho YJ. 2020. Effects of phenolics from Oplismenus undulatifolius in α-MSH-stimulated B16F10 melanoma cells. J. Appl. Biol. Chem. 63: 89-93.   DOI
3 Remsberg CM, Yanez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM. 2008. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 22: 169-179.   DOI
4 Yoon HS, Hyun CG, Lee NH, Park SS, Shin DB. 2016. Comparative depigmentation effects of resveratrol and its two methyl analogues in α-melanocyte stimulating hormone-triggered B16/F10 murine melanoma cells. Prev. Nutr. Food Sci. 21: 155.   DOI
5 Newton RA, Cook AL, Roberts DW, Leonard JH, Sturm RA. 2007. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J. Invest. Dermatol. 127: 2216-2227.   DOI
6 Henriquez C, Lopez-Alarcon C, Lutz MGM, Speisky H. 2011. Time-dependence of ferric reducing antioxidant power (FRAP) index in Chilean apples and berries. Arch. Latinoam. Nutr. 61: 323-332.
7 Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)- catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253.   DOI
8 Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619.   DOI
9 Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, et al. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220.   DOI
10 Mizutani K, Ikeda K, Kawai Y, Yamori Y. 1998. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 253: 859-863.   DOI
11 Fremont L. 2000. Biological effects of resveratrol. Life Sci. 66: 663-673.   DOI
12 Baxter RA. 2008. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 7: 2-7.   DOI
13 Walle T. 2011. Bioavailability of resveratrol. Ann. NY Acad. Sci. 1215: 9-15.   DOI
14 Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS, et al. 2002. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19: 1907-1914.   DOI
15 Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z. 2003. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374: 157-163.   DOI
16 Moon K, Cha J. 2020. Enhancement of antioxidant and antibacterial activities of Salvia miltiorrhiza roots fermented with Aspergillus oryzae. Foods 9: 34.   DOI
17 Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP. 2002. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302: 369-373.   DOI
18 Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. 2019. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 20: 1381.   DOI
19 Jiang JR, Yuan S, Ding JF, Zhu SC, Xu HD, Chen T, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657.   DOI
20 Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. 2004. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32: 1377-1382.   DOI
21 Wenzel E, Somoza V. 2005. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 49: 472-481.   DOI
22 Orsini F, Verotta L, Klimo K, Gerhauser C. 2016. Synthesis of resveratrol derivatives and in vitro screening for potential cancer chemopreventive activities. Arch. Pharm. Chem. Life Sci. 349: 414-427.   DOI
23 Liu Q, Kim C, Jo YH, Kim SB, Hwang BY, Lee MK. 2015. Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors. Molecules 20: 16933-16945.   DOI
24 Kim KH, Park YD, Park H, Moon KO, Ha KT, Baek NI, et al. 2014. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744: 147-156.   DOI
25 Lee TH, Seo JO, Baek SH, Kim SY. 2014. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. 22: 35-40.   DOI
26 Constant J. 1997. Alcohol, ischemic heart disease, and the French paradox. Clin. Cardiol. 20: 420-424.   DOI
27 Fan E, Zhang L, Jiang S, Bai Y. 2008. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food. 11: 610-614.   DOI
28 Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, et al. 2013. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8: e54505.   DOI
29 Moon KO, Park H, Joo M, Ha KT, Baek NI, Park CS, et al. 2017. Glycosylation enhances the physicochemical properties of caffeic acid phenethyl ester. J. Microbiol. Biotechnol. 27: 1916-1924.   DOI
30 Park S, Moon K, Park CS, Jung DH, Cha J. 2018. Synthesis of aesculetin and aesculin glycosides using engineered Escherichia coli expressing Neisseria polysaccharea amylosucrase. J. Microbiol. Biotechnol. 28: 566-570.   DOI
31 Kometani T, Nishimura T, Nakae T, Takii H, Okada S. 1996. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucano-transferase from an Alkalophilic Bacillus species. Biosci. Biotechnol. Biochem. 60: 645-649.   DOI
32 Park H, Kim J, Choi KH, Hwang S, Yang SJ, Baek NI, et al. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189.   DOI
33 Ozaki S, Imai H, Iwakiri T, Sato T, Shimoda K, Nakayama T, et al. 2012. Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana. Biotechnol. Lett. 34: 475-481.   DOI
34 Jun SY, Park KM, Choi KW, Jang MK, Kang HY, Lee SH, et al. 2008. Inhibitory effects of arbutin-β-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol. Lett. 30: 743-748.   DOI
35 Kim JK, Park KT, Lee HS, Kim M, Lim YH. 2012. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: comparison with mulberroside A. J. Enzyme Inhib. Med. Chem. 27: 495-503.   DOI
36 Satooka H, Kubo I. 2012. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg. Med. Chem. 20: 1090-1099.   DOI
37 Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, et al. 2001. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem. 276: 22586-22594.   DOI
38 Waffo Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon J-M. 1998. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 61: 655-657.   DOI
39 Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669-675.   DOI
40 Jeong ET, Jin MH, Kim MS, Chang YH, Park SG. 2010. Inhibition of melanogenesis by piceid isolated from Polygonum cuspidatum. Arch. Pharm. Res. 33: 1331-1338.   DOI
41 Ohguchi K, Tanaka T, Kido T, Baba K, Iinuma M, Matsumoto K, et al. 2003. Effects of hydroxystilbene derivatives on tyrosinase activity. Biochem. Biophys. Res. Commun. 307: 861-863.   DOI
42 Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. 1995. Effects of α-and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem. 59: 143-144.   DOI
43 Fang JG, Lu M, Chen ZH, Zhu HH, Li Y, Yang L, et al. 2002. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chem. Eur. J. 8: 4191-4198.   DOI
44 Lee HS, Lee BW, Kim MR, Jun JG. 2010. Syntheses of resveratrol and its hydroxylated derivatives as radical scavenger and tyrosinase inhibitor. Bull. Korean Chem. Soc. 31: 971-975.   DOI