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The glycome consists of all glycans (or carbohydrates) within a 
biological system, and modulates a wide range of important bio-
logical activities, from protein folding to cellular communi-
cations. The mining of the glycome for disease markers repre-
sents a new paradigm for biomarker discovery; however, this ef-
fort is severely complicated by the vast complexity and structural 
diversity of glycans. This review summarizes recent develop-
ments in analytical technology and methodology as applied to 
the fields of glycomics and glycoproteomics. Mass spectrometric 
strategies for glycan compositional profiling are described, as are 
potential refinements which allow structure-specific profiling. 
Analytical methods that can discern protein glycosylation at a 
specific site of modification are also discussed in detail. 
Biomarker discovery applications are shown at each level of 
analysis, highlighting the key role that glycoscience can play in 
helping scientists understand disease biology. [BMB Reports 
2012; 45(6): 323-330]

INTRODUCTION

Proteins are commonly decorated with long carbohydrate 
chains, known as glycans, during normal biosynthesis. Over 
60% of all proteins (from all sources, including humans, plants, 
bacteria, etc) are estimated to be glycosylated (1). A large pop-
ulation of these glycosylated proteins may be found on the cell 
surface, where they are optimally poised to be the first cellular 
components encountered by approaching cells, pathogens, anti-
bodies, or other molecules (2-4). The glycosylation machinery 
within a cell is extraordinarily complex, involving a set of over 
200 competing glycosyltransferases that can each modify a nas-
cent glycoprotein by adding specific saccharides via specific 
linkages (5). Up- or down-regulation of an individual transferase, 
thus, is amplified across the entire glycan biosynthetic pathway 
(and by induction all glycosylated proteins) making glycosylation 

an extremely sensitive indicator of intracellular conditions. 
Glycans and glycoproteins show great promise as a source of bi-
omarkers for aberrant cell behavior and/or disease states such as 
cancer (6, 7).
　The development of glycan-derived biomarkers depends heav-
ily on the advancement of analytical technologies for elucidating 
the glycome. The inherent diversity and complexity of glyco-
sylation makes glycomic analysis particularly challenging; how-
ever, mass spectrometry and associated hyphenated techniques 
such as LC/MS offer an elegant solution to the issues at hand. 
Mass spectrometry (MS) is an extremely versatile tool for probing 
the intricacies of complex systems such as the glycome. It pro-
vides rapid and sensitive detection of sample components and 
can be used as a precise tool for structural elucidation. MS has 
contributed significantly to recent progress towards under-
standing the role of the glycome in biological systems such as se-
rum, mammalian milk, saliva, tears, etc (8-17).
　Mass spectrometric techniques are often paired with online 
liquid chromatography (LC) in order to achieve an additional di-
mension (or dimensions) of separation. In relation to glycomic 
analysis, LC is most commonly used to separate and differentiate 
between the many potential structural isomers possible in glycan 
biosynthesis. Isomeric glycoforms of identical mass exhibit differ-
ential retention times on structure-sensitive porous graphitized 
carbon (PGC) (17-23) or hydrophilic interaction (HILIC) (24, 25) 
stationary phases and may thus be separated orthogonally to MS 
analysis. Once separated, fragmentation techniques such as tan-
dem MS (MS/MS or MSn) and/or exoglycosidase digestion may 
be employed to differentiate structural isomers by mono-
saccharide structure, connectivity, and linkage (19-24).
　This review summarizes recent technological and methodo-
logical advances in the closely-related fields of glycomics and 
glycoproteomics. Glycomic methods for glycan compositional 
mass profiling as well as structure-specific chromatographic 
profiling are discussed in detail. More recent innovations in gly-
coproteomics are also discussed, with a particular emphasis on 
site-specific methods for analyzing glycosylation. Throughout the 
review, applications to glycomic and glycoproteomic biomarker 
discovery are highlighted.
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Fig. 1. Biomarker discovery platform using glycomics approach.

GLYCOMICS FOR BIOMARKER DISCOVERY: 
COMPOSITIONAL AND STRUCTURE-SPECIFIC 
APPROACHES

The search for glycan biomarkers typically begins with glyco-
mics and other glycan-centric approaches. Glycomics analyses 
examine glycans which have been harvested from some bio-
logical source (commonly, glycoproteins in serum or other bio-
logical matrices). The glycan and protein moieties of a glyco-
protein are separated either enzymatically (via glycanases such 
as peptide N-glycosidase F, a.k.a. PNGase F) or chemically (as 
by β-elimination). The released glycans are then enriched and 
analyzed.
　Current methods for comprehensive analysis of glycans may 
be divided into two major categories- compositional mass profil-
ing and structure-specific chromatographic profiling, both illus-
trated in Fig. 1. Compositional mass profiling utilizes high-reso-
lution mass spectrometry (MS) to rapidly separate and identify 
glycans based on accurate mass. Glycans may be chromato-
graphically fractionated offline and spotted for MALDI (in appli-
cations where speed is desirable) (15, 26-33); or, they may be 
separated online by methods such as reversed phase (RP) liquid 
chromatography (LC) immediately prior to introduction into the 
mass spectrometer via electrospray ionization (where greater 
sensitivity is necessary) (34-36).
　Compositional mass profiling describes the glycans present in 
a sample in relation to the number of hexoses (such as glucose, 
galactose, or mannose), N-acetylhexosamines, deoxyhexoses 
(typically fucose), and sialic acids (such as N-acetylneuraminic 
acid or N-glycolylneuraminic acid) that each glycan is composed 
of. By combining the compositional information provided by MS 
analysis with biological knowledge of probable glycan struc-
tures, glycan structures may be inferred (37). If available, tandem 
MS can also be applied to further elucidate the glycan structure 
(2, 14, 26, 34-36, 38-42).
　Glycan compositional mass profiling is an attractive option for 

biomarker discovery due to the simplicity of the data analysis 
and its potential for rapid- and high-throughput applications 
(when done by MALDI-MS). For example, Lebrilla and co- 
workers have reported extensively on the application of a 
MALDI- MS-based glycomics platform towards the discovery of 
glycan biomarkers for cancer and other diseases (7-9, 14-16, 
26-29). However, compositional glycan profiling is somewhat 
limited by its inability to differentiate or distinguish between gly-
can isomers. Due to the complexity of the glycan biosynthetic 
pathway, a glycan composition can potentially be composed of 
several isomeric glycan structures with differing monosaccharide 
linkages or branching. Since these structures are produced by 
different glycosyltransferases, they often have diverging bio-
logical implications (43, 44).
　To address this issue, several recent studies have focused on 
structure-specific chromatographic profiling of glycans (17, 18, 
21, 23, 24, 45, 46). These studies utilize structure-sensitive chro-
matography (typically, either PGC or HILIC) to separate glycans 
online prior to MS analysis. Once separated, specific glycan 
structures may be identified based on a retention time library 
(21, 47) or by further fragmentation, e.g. by tandem MS (24).
　The incorporation of chromatographically-derived structure 
specificity into existing strategies for MS-based glycan biomarker 
discovery promises to provide highly sensitive and specific bio-
markers for many diseases. Recently, Hua et al. chromato-
graphically profiled the whole serum N-glycome and uncovered 
a number of potential structure-specific biomarkers of prostate 
cancer (17). Meanwhile, Bäckström et al. examined O-glycan 
structures on MUC1, a cell-surface glycoprotein, and found dif-
ferences in the glycosylation of breast, prostate, and gastric can-
cer samples (23).
　Structure-specific glycan profiling is, at the time of writing, a 
relatively new technique still under development. However, the 
underlying analytical technology is constantly evolving, partic-
ular in the area of LC miniaturization (e.g. UHPLC and nano-LC). 
As the capabilities (and availability) of these instruments in-
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crease, structure-specific profiling is expected to become the pre-
ferred strategy for future glycan biomarker discovery.

GLYCOPROTEOMIC APPROACHES TOWARDS 
DETERMINING SITE-SPECIFIC GLYCOSYLATION

Though the term "glycoproteomics" is used quite often in liter-
ature, truly integrated glycoproteomic methods are few and far 
between. More commonly, glycoproteins are analyzed using a 
variety of protein- or glycan-centric methods. A typical pro-
tein-centric approach towards glycoprotein analysis might in-
volve enrichment for glycoproteins or glycopeptides by either 
lectin affinity (48-52) or hydrazide chemistry (53-56), followed 
by enzymatic or chemical deglycosylation of the enriched pro-
teins or peptides. Following deglycosylation, the proteins or pep-
tides are subjected to a standard proteomics workflow in order 
to identify the protein components of the sample. This approach 
can yield some basic information about the sites of glycosylation 
on a protein, but removes most if not all information about the 
glycan structures associated with the glycoprotein.
　Conversely, glycoproteins can be analyzed using a glycan-cen-
tric (or glycomic) approach. As discussed in the previous section, 
this involves separation of the glycan and protein moieties of a 
glycoprotein, followed by analysis of the released glycans. This 
approach can yield extensive information about the composition 
and/or structure of the total glycans present in a sample (2, 14, 
17, 21, 57, 58), but removes information about the glycoproteins 
and specific glycosylation sites from which these glycans 
originated.
　In contrast, a truly glycoproteomic approach should integrate 
both glycomic and proteomic approaches to provide information 
about not only glycan structures but also the exact locations of 
these glycans on specific glycoproteins. Development of such 
methods is currently in their infancy; however, the general strat-
egy involves proteolytic digestion of glycoproteins, thereby gen-
erating a mixture of glycopeptides. These glycopeptides can then 
be extensively interrogated by mass spectrometry for structural in-
formation about the glycan moiety as well as identity of the origi-
nating glycoprotein and site of modification (based on the pep-
tide moiety); i.e. the glycoprotein's site-specific glycosylation.
　Trypsin a commonly-used protease in proteomics workflows 
and, correspondingly, has been applied to determine the 
site-specific glycosylation of single proteins. Due to its highly 
specific proteolytic activity, the results of tryptic digests can easi-
ly be predicted in silico if the sequence of the analyte protein is 
known. Once tryptic peptide masses are known, it becomes a 
simple computational exercise to match accurate glycopeptide 
masses (obtained via high resolution mass spectrometry) to po-
tential peptide/glycan combinations.
　Tryptic digests have been used by many labs to determine the 
site-specific glycosylation of selected N-and O-glycosylated pro-
teins, including ribonuclease B (a simple, well-characterized gly-
coprotein with one N-glycosylation site) (59); prostatic acid phos-
phatase (an indicator of prostate cancer) (60); bovine fetuin (a 

well-characterized glycoprotein with both N- and O-glycosylation) 
(59, 61); erythropoietin (an important biotherapeutic drug) (52, 
61); horseradish peroxidase (used widely in biochemistry labs as a 
catalyst for oxidation) (59, 62); and haptoglobin (one of the most 
abundant proteins in human serum) (51, 59, 63).
　However, in many cases, there are distinct disadvantages to 
tryptic digestion of glycoproteins. Trypsin's high substrate specif-
icity limits the sites at which it can cleave a glycoprotein. The 
amino acid sequences of some glycoproteins may be fortuitously 
rich in arginine or lysine residues, enabling the creation of rea-
sonably-sized glycopeptides with only a single site of glyco-
sylation; however, other glycoprotein amino acid sequences may 
include extended spans without arginine or lysine residues, re-
sulting in the creation of excessively large glycopeptides. Large 
glycopeptides are not only harder to detect by mass spectrome-
try (due to decreased ionization efficiency as well as instru-
mental limitations) but can also incorporate multiple sites of gly-
cosylation, severely complicating or obfuscating site-specific 
analysis. This is exacerbated by the well-known phenomenon of 
glycoprotein trypsin resistance, which occurs when glycosylation 
in close proximity to a proteolytic cleavage site sterically hinders 
the proteolytic activity, resulting in a missed cleavage (64, 65).
　One strategy to avoid such issues is to subject a glycoprotein 
of interest to a customized digestion scheme consisting of either 
sequential or simultaneous digestion by multiple specific 
proteases. Pompach et al., for example, used endoproteinase 
Glu-C to cleave a problematic tryptic glycopeptide of haptoglo-
bin with two glycosylation sites into two separate glycopeptides 
with one glycosylation site each, thereby enabling site-specific 
analysis (66). Tajiri, Yoshida, and Wada used lysylendopeptidase 
to create small glycopeptides of prostate specific antigen, an im-
portant biomarker for prostate cancer (67). Tajiri, Yoshida, and 
Wada used chymotrypsin to create O-glycopeptides from fi-
bronectin after tryptic digestion failed to create any detectable 
O-glycopeptides (68). While such specifically-tailored strategies 
may be effective for individual glycoprotein targets, a large-scale 
glycoproteomic study would necessarily require a more broad-
ly-applicable strategy for digesting glycoproteins into analyzable 
glycopeptides.
　More recently, significant effort has gone towards develop-
ment of analytical methods which utilize non-specific or 
broad-specificity proteases and protease cocktails to digest glyco-
proteins into glycopeptides and thus determine site-specific 
glycosylation. This represents a departure from mass spectrome-
try labs' traditional reliance on trypsin, inherited from the field of 
proteomics. Broad-specificity proteases hydrolyze peptide bonds 
at a number of different sites on a glycoprotein and, thus, can 
create glycopeptides of a roughly consistent size regardless of 
the amino acid sequence of the glycoprotein or steric hindrance 
by the glycan.
　A number of broad-specificity proteases have been proposed 
for general use in glycoprotein digests and subsequent site-spe-
cific analysis of glycosylation. Neue et al. explored the utility of 
thermolysin in digesting O-glycoproteins, which often exhibit 
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closely-clustered glycosylation in areas rich in serine, threonine, 
proline, and alanine (69). Among other activities, thermolysin 
cleaves N-terminal to alanine residues, facilitating the creation of 
O-glycopeptides from within the O-glycosylated region with on-
ly a single glycosylation site per peptide. Proteinase K, which 
cleaves C-terminal to aliphatic, aromatic, or hydrophobic amino 
acids, has also been used by some groups to create small glyco-
peptides that are more amenable to site-specific analysis (70-73). 
However, perhaps the most development has gone into the use 
of pronase, a broad-specificity protease cocktail, as part of a gen-
eralized platform for analysis of site-specific glycosylation.
　In contrast to the other proteases discussed so far, pronase is a 
bacterially-produced cocktail of multiple proteases with a num-
ber of different activities. As a result, pronase is remarkably ro-
bust even when dealing with markedly protease-resistant glyco-
proteins (74-78). Additionally, the extent of pronase digestion 
(and, correspondingly, the length of the resulting glycopeptides) 
can be modulated simply by varying the digestion time and/or 
the enzyme-analyte ratio (79, 80). This affords a great deal of 
control over the resulting digest and allows researchers to easily 
optimize digestions according to their experimental needs.
　Due to the broad specificity of pronase, the number of in sili-
co possibilities for digested glycopeptides is relatively high com-
pared to higher-specificity proteases. In practice, however, only 
a few major glycopeptides are created for each glycan at each 
site of glycosylation. These may be easily assigned according to 
accurate mass using software algorithms designed to simulate 
non-specific cleavage of glycoproteins, such as GlycoX (81) or its 
in-house descendants in labs around the world. In cases where 
accurate mass is ambiguous or further verification is desired, tan-
dem MS experiments can further elucidate glycopeptide compo-
sition and structure (22, 82-85).
　More recently, MS-based analysis of pronase glycopeptides 
has been enhanced by the increasing availability of sensitive, ro-
bust, and reproducible nano-LC techniques. Online nano-LC sep-
aration of glycopeptide digests prior to MS and MS/MS detection 
not only increases sensitivity by reducing ion suppression, but al-
so introduces the possibility of isomer separation and structural 
differentiation of isomeric protein glycoforms. Due to the struc-
turally complex nature of glycosylation and the functional im-
pact of small structural variations in glycans, much importance is 
placed on differentiating isomeric glycoforms (6, 17, 43, 86). In 
particular, porous graphitized carbon (PGC), a mixed-mode sta-
tionary phase popularly used in carbohydrate analysis, has been 
applied extensively to separation of glycan isomers (17, 18, 21, 
45, 46). Lately, PGC nano-LC has been extended towards the se-
paration of glycopeptides (22, 59, 87).
　For example, Hua et al. recently showed that isomeric glyco-
peptides can be baseline resolved by chip-based PGC nano-LC 
(22). Glycopeptide isomer separation, combined with structural 
characterization by MS/MS, enabled localization of detailed 
O-glycan structures to specific glycosylation sites on trypsin-re-
sistant O-glycoprotein κ-casein. Glycopeptide retention by PGC 
was found to be modulated by both the glycan and peptide moi-

eties, such that the PGC retention times of glycopeptides with 
small peptide moieties (such as those produced by pronase or 
other broad-specificity proteases) were heavily affected by their 
glycan moieties, whereas the PGC retention times of glycopep-
tides with large peptide moieties (such as those produced by 
trypsin) were less affected by their glycan moieties. These results 
supported findings by Alley, Mechref, and Novotny (59) on the 
improved retention and separation of short tryptic glycopeptides 
by PGC (compared to reversed phase) and emphasize the advan-
tages of using broad-specificity proteases to generate uniformly 
short glycopeptides so as to fully take advantage of the iso-
mer-sensitive separation capabilites of PGC.

BIOMARKER APPLICATIONS OF GLYCOPROTEOMICS

Interest in glycoproteomics has spiked in recent years as the im-
pact of glycosylation on glycoprotein structure and function has 
become known. Glycoproteomic methods for determining site- 
specific glycosylation provide unique insights into disease- re-
lated aberrations in glycosylation and have clear applications to-
wards biomarker discovery.
　Zhao et al. analyzed the site-specific glycosylation of α1-anti-
trypsin, an abundant serum glycoprotein, and were able to iden-
tify specific glycosylation patterns which varied with incidence 
of pancreatic cancer (43). Nakano et al. also studied site-specific 
glycosylation differences in pancreatic cancer but chose instead 
to focus on haptoglobin, another abundant serum protein, find-
ing specific glycoforms which differentiated pancreatic cancer 
patients from both chronic pancreatitis patients and normal con-
trols (63). Thaysen-Andersen et al. performed similar studies with 
tissue inhibitor of metalloproteinase-1 (TIMP-1), a known bio-
marker of colorectal cancer, and characterized several glyco-
forms of TIMP-1 that were unique to colon cancer cell lines (88).
　While intriguing, these early glycoproteomic results are largely 
qualitative rather than quantitative, relying on stark pres-
ence/absence rather than differential levels of certain glycoforms. 
To find broader application and take advantage of all available 
data, future glycoproteomic approaches towards biomarker dis-
covery will need to determine site-specific glycosylation in a 
more quantitative manner. For example, Fig. 2 shows the 
site-specific glycosylation on four different production batches of 
infliximab, a chimeric biotherapeutic, at a conserved N-glyco-
sylation site in its human IgG1-derived Fc region. The high ana-
lytical reproducibility of the broad-specificity protease digests, 
performed in triplicate, can be seen in the miniscule error bars 
associated with each glycoform in the four batches. Batch- 
to-batch variation was tracked for 11 different glycoforms at this 
site of glycosylation, including two isomeric pairs.

CONCLUSION

Recent developments in MS-based glycomics and glyco-
proteomics have rapidly advanced the field and pushed the 
boundaries of glycan-derived biomarker research into new 
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Fig. 2. Site-specific glycosylation on 
four different production batches of 
infliximab, a chimeric biotherapeutic, 
at a conserved N-glycosylation site in 
its human IgG1-derived Fc region. 
Glycan error bars denote the standard 
error found in three separate in-
jections of three separate glycoprotein 
digests. Each color represents one of 
the four production batches tested.

territories. Structure-specific glycomics is now within reach and 
just starting to be applied to biomarker research. Meanwhile, ad-
vances in glycoproteomic analysis are beginning to yield quanti-
tative strategies for the discovery of site-specific glycan 
biomarkers. These new strategies are expected to generate highly 
sensitive and specific biomarkers for disease from an important 
yet largely unexplored portion of our biology: the glycome.
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