Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.6.132

Glycoscience aids in biomarker discovery  

Hua, Serenus (Graduate School of Analytical Science and Technology, Chungnam National University)
An, Hyun-Joo (Graduate School of Analytical Science and Technology, Chungnam National University)
Publication Information
BMB Reports / v.45, no.6, 2012 , pp. 323-330 More about this Journal
Abstract
The glycome consists of all glycans (or carbohydrates) within a biological system, and modulates a wide range of important biological activities, from protein folding to cellular communications. The mining of the glycome for disease markers represents a new paradigm for biomarker discovery; however, this effort is severely complicated by the vast complexity and structural diversity of glycans. This review summarizes recent developments in analytical technology and methodology as applied to the fields of glycomics and glycoproteomics. Mass spectrometric strategies for glycan compositional profiling are described, as are potential refinements which allow structure-specific profiling. Analytical methods that can discern protein glycosylation at a specific site of modification are also discussed in detail. Biomarker discovery applications are shown at each level of analysis, highlighting the key role that glycoscience can play in helping scientists understand disease biology.
Keywords
Biomarker; Glycomics; Glycoproteomics; Glycosylation; Mass spectrometry;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Qiu, Y., Patwa, T. H., Xu, L., Shedden, K., Misek, D. E., Tuck, M., Jin, G., Ruffin, M. T., Turgeon, D. K., Synal, S., Bresalier, R., Marcon, N., Brenner, D. E. and Lubman, D. M. (2008) Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot. J. Protoeme Res. 7, 1693-1703.   DOI   ScienceOn
2 Ahn, Y., Shin, P., Ji, E., Kim, H. and Yoo, J. (2012) A lectin- coupled, multiple reaction monitoring based quantitative analysis of human plasma glycoproteins by mass spectrometry. Anal. Bioanal. Chem. 402, 2101-2112.   DOI   ScienceOn
3 Miyoshi, E. and Nakano, M. (2008) Fucosylated haptoglobin is a novel marker for pancreatic cancer: detailed analyses of oligosaccharide structures. Proteomics 8, 3257-3262.   DOI   ScienceOn
4 Lancaster, K. S., An, H. J., Li, B. and Lebrilla, C. B. (2006) Interrogation of N-linked oligosaccharides using infrared multiphoton dissociation in ft-icr mass spectrometry. Anal. Chem. 78, 4990-4997.   DOI   ScienceOn
5 Ito, H., Takegawa, Y., Deguchi, K., Nagai, S., Nakagawa, H., Shinohara, Y. and Nishimura, S.-I. (2006) Direct structural assignment of neutral and sialylated N-glycans of glycopeptides using collision-induced dissociation MSn spectral matching. Rapid Commun. Mass Sp. 20, 3557-3565.   DOI   ScienceOn
6 Zhang, J., Schubothe, K., Li, B., Russell, S. and Lebrilla, C. B. (2004) Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides. Anal. Chem. 77, 208-214.
7 Zhao, J., Simeone, D. M., Heidt, D., Anderson, M. A. and Lubman, D. M. (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. J. Protoeme Res. 5, 1792-1802.   DOI   ScienceOn
8 De Reggi, M., Capon, C., Gharib, B., Wieruszeski, J.-M., Michel, R. and Fournet, B. (1995) The glycan moiety of human pancreatic lithostathine. Eur. J. Biochem. 230, 503-510.   DOI
9 Bones, J., Mittermayr, S., O'Donoghue, N., Guttman, A. S. and Rudd, P. M. (2010) Ultra performance liquid chromatographic profiling of serum n-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal. Chem. 82, 10208-10215.   DOI   ScienceOn
10 An, H. J., Miyamoto, S., Lancaster, K. S., Kirmiz, C., Li, B., Lam, K. S., Leiserowitz, G. S. and Lebrilla, C. B. (2006) Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J. Protoeme Res. 5, 1626-1635.   DOI   ScienceOn
11 Kirmiz, C., Li, B., An, H. J., Clowers, B. H., Chew, H. K., Lam, K. S., Ferrige, A., Alecio, R., Borowsky, A. D. and Sulaimon, S. (2007) A serum glycomics approach to breast cancer biomarkers. Mol. Cell. Proteom. 6, 43-55.
12 Leiserowitz, G. S., Lebrilla, C., Miyamoto, S., An, H. J., Duong, H., Kirmiz, C., Li, B., Liu, H. and Lam, K. S. (2008) Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int. J. Gynecol. Cancer 18, 470-475.   DOI   ScienceOn
13 de Leoz, M. L. A., An, H. J., Kronewitter, S., Kim, J., Beecroft, S., Vinall, R., Miyamoto, S., de Vere White, R., Lam, K. S. and Lebrilla, C. (2008) Glycomic approach for potential biomarkers on prostate cancer: Profiling of N-linked glycans in human sera and pRNS cell lines. Dis. Markers 25, 243-258.   DOI   ScienceOn
14 Barkauskas, D. A., An, H. J., Kronewitter, S. R., de Leoz, M. L., Chew, H. K., de Vere White, R. W., Leiserowitz, G. S., Miyamoto, S., Lebrilla, C. B. and Rocke, D. M. (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25, 251-257.   DOI   ScienceOn
15 Hua, S., An, H. J., Ozcan, S., Ro, G. S., Soares, S., DeVere-White, R. and Lebrilla, C. B. (2011) Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136, 3663-3671.   DOI   ScienceOn
16 Ruhaak, L. R., Miyamoto, S., Kelly, K. and Lebrilla, C. B. (2011) N-glycan profiling of dried blood spots. Anal. Chem. 84, 396-402.
17 Apweiler, R., Hermjakob, H. and Sharon, N. (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. BBA-Gen. Subjects 1473, 4-8.
18 An, H. J., Gip, P., Kim, J., Wu, S., Park, K. W., McVaugh, C. T., Schaffer, D. V., Bertozzi, C. R. and Lerbilla, C. B. (2011) Extensive determination of glycan heterogeneity reveals an unusual abundance of high-mannose glycans in enriched plasma membranes of human embryonic stem cells. Mol. Cell. Proteom. 11, 1-13.
19 Thaysen-Andersen, M., Thogersen, I. B., Lademann, U., Offenberg, H., Giessing, A. M. B., Enghild, J. J., Nielsen, H. J., Brunner, N. and Hojrup, P. (2008) Investigating the biomarker potential of glycoproteins using comparative glycoprofiling-application to tissue inhibitor of metalloproteinases- 1, Biochimica et Biophysica Acta (BBA) - Proteins &. Proteomics 1784, 455-463.
20 Seipert, R. R., Dodds, E. D. and Lebrilla, C. B. (2008) Exploiting differential dissociation chemistries of o-linked glycopeptide ions for the localization of mucin-type protein glycosylation. J. Protoeme Res. 8, 493-501.
21 Tajiri, M., Yoshida, S. and Wada, Y. (2005) Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment, Glycobiology 15, 1332-1340.   DOI   ScienceOn
22 Neue, K., Mormann, M., Peter-Katalinić, J. and Pohlentz, G. (2011) Elucidation of glycoprotein structures by unspecific proteolysis and direct nanoESI mass spectrometric analysis of ZIC-HILIC-enriched glycopeptides. J. Protoeme Res. 10, 2248-2260.   DOI   ScienceOn
23 Larsen, M. R., Højrup, P. and Roepstorff, P. (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol. Cell. Proteom. 4, 107-119.   DOI
24 Xin, L., Zhang, H., Liu, H. and Li, Z. (2012) Equal ratio of graphite carbon to activated charcoal for enrichment of N-glycopeptides prior to matrix-assisted laser desorption/ ionization time-of-flight mass spectrometric identification. Rapid Commun. Mass Sp. 26, 269-274.   DOI   ScienceOn
25 Thaysen-Andersen, M., Mysling, S. and Højrup, P. (2009) Site-specific glycoprofiling of N-Linked glycopeptides using MALDI-TOF MS: strong correlation between signal strength and glycoform quantities. Anal. Chem. 81, 3933-3943.   DOI   ScienceOn
26 White, K. Y., Rodemich, L., Nyalwidhe, J. O., Comunale, M. A., Clements, M. A., Lance, R. S., Schellhammer, P. F., Mehta, A. S., Semmes, O. J. and Drake, R. R. (2009) Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. J. Protoeme Res. 8, 620-630.   DOI   ScienceOn
27 Kuo, C.-W., Wu, I. L., Hsiao, H.-H. and Khoo, K.-H. (2012) Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Anal. Bioanal. Chem. 402, 2765-2776.   DOI   ScienceOn
28 Hua, S., Lebrilla, C. and An, H. J. (2011) Application of nano-LC-based glycomics towards biomarker discovery. Bioanalysis 3, 2573-2585.   DOI   ScienceOn
29 Pabst, M., Bondili, J. S., Stadlmann, J., Mach, L. and Altmann, F. (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79, 5051-5057.   DOI   ScienceOn
30 Alley, W. R., Madera, M., Mechref, Y. and Novotny, M. V. (2010) Chip-based reversed-phase liquid chromatographymass spectrometry of permethylated n-linked glycans: a potential methodology for cancer-biomarker discovery. Anal. Chem. 82, 5095-5106.   DOI   ScienceOn
31 Prater, B. D., Connelly, H. M., Qin, Q. and Cockrill, S. L. (2009) High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal. Biochem. 385, 69-79.   DOI   ScienceOn
32 Yu, S.-Y., Chang, L.-Y., Cheng, C.-W., Chou, C.-C., Fukuda, M. and Khoo, K.-H. (2012) Priming mass spectrometry- based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconj. J. 1-12. [Epub ahead of print].
33 Kronewitter, S. R., An, H. J., de Leoz, M. L., Lebrilla, C. B., Miyamoto, S. and Leiserowitz, G. S. (2009) The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics 9, 2986-2994.   DOI   ScienceOn
34 Li, B., Russell, S. C., Zhang, J., Hedrick, J. L. and Lebrilla, C. B. (2011) Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions o O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 21, 877-894.   DOI   ScienceOn
35 An, H. J. and Lebrilla, C. B. (2011) Structure elucidation of native N- and O-linked glycans by tandem mass spectrometry (tutorial). Mass Spectrom. Rev. 30, 560-578.   DOI   ScienceOn
36 Wu, S., Tao, N., German, J. B., Grimm, R. and Lebrilla, C. B. (2010) Development of an annotated library of neutral human milk oligosaccharides. J. Protoeme Res. 9, 4138-4151.   DOI   ScienceOn
37 Wu, S., Grimm, R., German, J. B. and Lebrilla, C. B. (2010) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Protoeme Res. 10, 856-868.
38 Aldredge, D., An, H. J., Tang, N., Waddell, K. and Lebrilla, C. B. (2012) Annotation of a serum n-glycan library for rapid identification of structures. J. Protoeme Res. 11, 1958-1968.   DOI   ScienceOn
39 Barile, D., Tao, N., Lebrilla, C. B., Coisson, J.-D., Arlorio, M. and German, J. B. (2009) Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int. Dairy J. 19, 524-530.   DOI   ScienceOn
40 Tao, N., DePeters, E. J., Freeman, S., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy Sci. 91, 3768-3778.   DOI   ScienceOn
41 LoCascio, R. G., Ninonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342.   DOI   ScienceOn
42 de Leoz, M. L. A., Young, L. J. T., An, H. J., Kronewitter, S. R., Kim, J., Miyamoto, S., Borowsky, A. D., Chew, H. K. and Lebrilla, C. B. (2011) High-mannose glycans are elevated during breast cancer progression. Mol. Cell. Proteom. 10, 1-9.
43 Kronewitter, S. R., de Leoz, M. L. A., Peacock, K. S., McBride, K. R., An, H. J., Miyamoto, S., Leiserowitz, G. S. and Lebrilla, C. B. (2010) Human serum processing and analysis methods for rapid and reproducible N-glycan mass profiling. J. Protoeme Res. 9, 4952-4959.   DOI   ScienceOn
44 Arndt, N. X., Tiralongo, J., Madge, P. D., von Itzstein, M. and Day, C. J. (2011) Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines. J. Cell. Biochem. 112, 2230-2240.   DOI   ScienceOn
45 Wuhrer, M., Koeleman, C. A. M., Hokke, C. H. and Deelder, A. M. (2004) Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spectrometry of glycopeptides. Anal. Chem. 77, 886-894.
46 Temporini, C., Perani, E., Calleri, E., Dolcini, L., Lubda, D., Caccialanza, G. and Massolini, G. (2006) Pronase-immobilized enzyme reactor: an approach for automation in glycoprotein analysis by LC/LC-ESI/MSn. Anal. Chem. 79, 355-363.
47 Tang, Z., Varghese, R. S., Bekesova, S., Loffredo, C. A., Hamid, M. A., Kyselova, Z., Mechref, Y., Novotny, M. V., Goldman, R. and Ressom, H. W. (2009) Identification of N-glycan serum markers associated with hepatocellular carcinoma from mass spectrometry data. J. Protoeme Res. 9, 104-112.
48 Froehlich, J. W., Barboza, M., Chu, C., Lerno, L. A., Clowers, B. H., Zivkovic, A. M., German, J. B. and Lebrilla, C. B. (2011) Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal. Chem. 83, 5541-5547.   DOI   ScienceOn
49 Liu, X., McNally, D. J., Nothaft, H., Szymanski, C. M., Brisson, J.-R. and Li, J. (2006) Mass spectrometry-based glycomics strategy for exploring N-linked glycosylation in eukaryotes and bacteria, Anal. Chem. 78, 6081-6087.   DOI   ScienceOn
50 Dodds, E. D., Seipert, R. R., Clowers, B. H., German, J. B. and Lebrilla, C. B. (2008) Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J. Protoeme Res. 8, 502-512.
51 Clowers, B. H., Dodds, E. D., Seipert, R. R. and Lebrilla, C. B. (2007) Site determination of protein glycosylation based on digestion with immobilized nonspecific proteases and fourier transform ion cyclotron resonance mass spectrometry. J. Protoeme Res. 6, 4032-4040.   DOI   ScienceOn
52 Gray, J. S. S., Yang, B. Y. and Montgomery, R. (1998) Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohydr. Res. 311, 61-69.   DOI   ScienceOn
53 Nakano, M., Nakagawa, T., Ito, T., Kitada, T., Hijioka, T., Kasahara, A., Tajiri, M., Wada, Y., Taniguchi, N. and Miyoshi, E. (2008) Site-specific analysis of N-glycans on haptoglobin in sera of patients with pancreatic cancer: A novel approach for the development of tumor markers. Int. J. Cancer 122, 2301-2309.   DOI   ScienceOn
54 Wu, Z. L., Ethen, C., Hickey, G. E. and Jiang, W. (2009) Active 1918 pandemic flu viral neuraminidase has distinct N-glycan profile and is resistant to trypsin digestion. Biochem. Biophys. Res. Commun. 379, 749-753.   DOI   ScienceOn
55 Fujihara, J., Yasuda, T., Kunito, T., Fujii, Y., Takatsuka, H., Moritani, T. and Takeshita, H. (2008) Two N-linked glycosylation sites (Asn18 and Asn106) are both required for full enzymatic activity, thermal stability and resistance to proteolysis in mammalian deoxyribonuclease i. Biosci. Biote chnol. Biochem. 72, 3197-3205.   DOI   ScienceOn
56 Pompach, P., Chandler, K. B., Lan, R., Edwards, N. and Goldman, R. (2012) Semi-automated identification of n-glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase lc-ms/ms and glycan database search. J. Protoeme Res. 11, 1728-1740.   DOI   ScienceOn
57 Kurogochi, M., Amano, M., Fumoto, M., Takimoto, A., Kondo, H. and Nishimura, S.-I. (2007) Reverse glycoblotting allows rapid-enrichment glycoproteomics of biopharmaceuticals and disease-related biomarkers. Angew. Chem. Int. Ed. 46, 8808-8813.   DOI   ScienceOn
58 Zeng, X., Hood, B. L., Sun, M., Conrads, T. P., Day, R. S., Weissfeld, J. L., Siegfried, J. M. and Bigbee, W. L. (2010) Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. J. Protoeme Res. 9, 6440-6449.   DOI   ScienceOn
59 An, H. J., Tillinghast, J. S., Woodruff, D. L., Rocke, D. M. and Lebrilla, C. B. (2006) A new computer program (GlycoX) to determine simultaneously the glycosylation sites and oligosaccharide heterogeneity of glycoproteins. J. Protoeme Res. 5, 2800-2808.   DOI   ScienceOn
60 Seipert, R. R., Dodds, E. D., Clowers, B. H., Beecroft, S. M., German, J. B. and Lebrilla, C. B. (2008) Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal. Chem. 80, 3684-3692.   DOI   ScienceOn
61 Zauner, G., Koeleman, C. A. M., Deelder, A. M. and Wuhrer, M. (2010) Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 33, 903-910.   DOI   ScienceOn
62 Yu, Y. Q., Fournier, J., Gilar, M. and Gebler, J. C. (2007) Identification of N-linked glycosylation sites using glycoprotein digestion with pronase prior to MALDI tandem time-of-flight mass spectrometry. Anal. Chem. 79, 1731- 1738.   DOI   ScienceOn
63 An, H. J., Froehlich, J. W. and Lebrilla, C. B. (2009) Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr. Opin. Chem. Biol. 13, 421-426.   DOI   ScienceOn
64 An, H. J., Peavy, T. R., Hedrick, J. L. and Lebrilla, C. B. (2003) Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal. Chem. 75, 5628-5637.   DOI   ScienceOn
65 Li, H., Li, B., Song, H., Breydo, L., Baskakov, I. V. and Wang, L.-X. (2005) Chemoenzymatic synthesis of HIV-1 V3 glycopeptides carrying two N-glycans and effects of glycosylation on the peptide domain. J. Org. Chem. 70, 9990-9996.   DOI   ScienceOn
66 Tajiri, M., Ohyama, C. and Wada, Y. (2008) Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology 18, 2-8.   DOI
67 Zhang, H., Yi, E. C., Li, X.-J., Mallick, P., Kelly-Spratt, K. S., Masselon, C. D., Camp, D. G., Smith, R. D., Kemp, C. J. and Aebersold, R. (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell. Proteom. 4, 144-155.   DOI
68 Zhang, H., Li, X.-J., Martin, D. B. and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotech. 21, 660-666.   DOI   ScienceOn
69 Zhou, Y., Aebersold, R. and Zhang, H. (2007) Isolation of N-linked glycopeptides from plasma. Anal. Chem. 79, 5826-5837.   DOI   ScienceOn
70 Tsai, H.-Y., Boonyapranai, K., Sriyam, S., Yu, C.-J., Wu, S.-W., Khoo, K.-H., Phutrakul, S. and Chen, S.-T. (2011) Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics 11, 2162-2170.   DOI   ScienceOn
71 Dallas, D. C., Martin, W. F., Strum, J. S., Zivkovic, A. M., Smilowitz, J. T., Underwood, M. A., Affolter, M., Lebrilla, C. B. and German, J. B. (2011) N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J. Agric. Food Chem. 59, 4255-4263.   DOI   ScienceOn
72 Alley, W. R., Mechref, Y. and Novotny, M. V. (2009) Use of activated graphitized carbon chips for liquid chromatography/ mass spectrometric and tandem mass spectrometric analysis of tryptic glycopeptides. Rapid Commun. Mass Sp. 23, 495-505.   DOI   ScienceOn
73 Campbell, M. P., Royle, L., Radcliffe, C. M., Dwek, R. A. and Rudd, P. M. (2008) GlycoBase and autoGU: tools for HPLC-based glycan analysis. Bioinformatics 24, 1214-1216.   DOI   ScienceOn
74 Kreunin, P., Zhao, J., Rosser, C., Urquidi, V., Lubman, D. M. and Goodison, S. (2007) Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling. J. Protoeme Res. 6, 2631-2639.   DOI   ScienceOn
75 Kyselova, Z., Mechref, Y., Al Bataineh, M. M., Dobrolecki, L. E., Hickey, R. J., Vinson, J., Sweeney, C. J. and Novotny, M. V. (2007) Alterations in the serum glycome due to metastatic prostate cancer. J. Protoeme Res. 6, 1822-1832.   DOI   ScienceOn
76 Mann, B. F., Goetz, J. A., House, M. G., Schmidt, C. M. and Novotny, M. V. (2012) Glycomic and proteomic profiling of pancreatic cyst fluids identifies hyperfucosylated lactosamines on the N-linked glycans of overexpressed glycoproteins. Mol. Cell. Proteom. [Epub ahead of print].
77 Alley, W. R., Vasseur, J. A., Goetz, J. A., Svoboda, M., Mann, B. F., Matei, D. E., Menning, N., Hussein, A., Mechref, Y. and Novotny, M. V. (2012) N-linked glycan structures and their expressions change in the blood sera of ovarian cancer patients. J. Protoeme Res. 11, 2282-2300.   DOI   ScienceOn
78 Balog, C. I. A., Stavenhagen, K., Fung, W. L. J., Koeleman, C. A., McDonnell, L. M., Verhoeven, A., Mesker, W. E., Tollenaar, R. A. E. M., Deelder, A. M. and Wuhrer, M. (2012) N-glycosylation of colorectal cancer tissues: a liquid chromatography and mass spectrometry-based investigation. Mol. Cell. Proteom. [Epub ahead of print].
79 Hua, S., Nwosu, C., Strum, J., Seipert, R., An, H., Zivkovic, A., German, J. and Lebrilla, C. (2012) Site-specific protein glycosylation analysis with glycan isomer differentiation. Anal. Bioanal. Chem. 403, 1291-1302.   DOI   ScienceOn
80 Backstroom, M., Thomsson, K. A., Karlsson, H. and Hansson, G. C. (2008) Sensitive liquid chromatographyelectrospray mass spectrometry allows for the analysis of the o-glycosylation of immunoprecipitated proteins from cells or tissues: application to muc1 glycosylation in cancer. J. Protoeme Res. 8, 538-545.
81 Bereman, M. S., Williams, T. I. and Muddiman, D. C. (2008) Development of a nanolc ltq orbitrap mass spectrometric method for profiling glycans derived from plasma from healthy, benign tumor control and epithelial ovarian cancer patients. Anal. Chem. 81, 1130-1136.
82 Li, Y.-L., Wu, G.-Z., Zeng, L., Dawe, G. S., Sun, L., Loers, G., Tilling, T., Cui, S.-S., Schachner, M. and Xiao, Z.-C. (2009) Cell surface sialylation and fucosylation are regulated by the cell recognition molecule L1 via $PLC{\gamma}$ and cooperate to modulate embryonic stem cell survival and proliferation. FEBS Lett. 583, 703-710.   DOI   ScienceOn
83 Baum, L. G. (2002) Developing a taste for sweets. Immunity 16, 5-8.   DOI   ScienceOn
84 An, H. J., Kronewitter, S. R., de Leoz, M. L. A. and Lebrilla, C. B. (2009) Glycomics and disease markers. Curr. Opin. Chem. Biol. 13, 601-607.   DOI   ScienceOn
85 Lebrilla, C. B. and An, H. J. (2009) The prospects of glycan biomarkers for the diagnosis of diseases. Mol. BioSyst. 5, 17-20.   DOI   ScienceOn
86 An, H. J., Ninonuevo, M., Aguilan, J., Liu, H., Lebrilla, C. B., Alvarenga, L. S. and Mannis, M. J. (2005) Glycomics analyses of tear fluid for the diagnostic detection of ocular rosacea. J. Protoeme Res. 4, 1981-1987.   DOI   ScienceOn
87 Vieira, A. C., An, H. J., Ozcan, S., Kim, J.-H., Lebrilla, C. B. and Mannis, M. J. (2012) Glycomic analysis of tear and saliva in ocular rosacea patients: the search for a biomarker. The Ocular Surface. (In press).
88 Ninonuevo, M. R., Park, Y., Yin, H., Zhang, J., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R. and Lebrilla, C. B. (2006) A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471-7480.   DOI