Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01073109) to K.M.
References
- Constant J. 1997. Alcohol, ischemic heart disease, and the French paradox. Clin. Cardiol. 20: 420-424. https://doi.org/10.1002/clc.4960200504
- Fan E, Zhang L, Jiang S, Bai Y. 2008. Beneficial effects of resveratrol on atherosclerosis. J. Med. Food. 11: 610-614. https://doi.org/10.1089/jmf.2007.0091
- Su D, Cheng Y, Liu M, Liu D, Cui H, Zhang B, et al. 2013. Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro. PLoS One 8: e54505. https://doi.org/10.1371/journal.pone.0054505
- Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, et al. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218-220. https://doi.org/10.1126/science.275.5297.218
- Mizutani K, Ikeda K, Kawai Y, Yamori Y. 1998. Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 253: 859-863. https://doi.org/10.1006/bbrc.1998.9870
- Newton RA, Cook AL, Roberts DW, Leonard JH, Sturm RA. 2007. Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J. Invest. Dermatol. 127: 2216-2227. https://doi.org/10.1038/sj.jid.5700840
- Fremont L. 2000. Biological effects of resveratrol. Life Sci. 66: 663-673. https://doi.org/10.1016/S0024-3205(99)00410-5
- Baxter RA. 2008. Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation. J. Cosmet. Dermatol. 7: 2-7. https://doi.org/10.1111/j.1473-2165.2008.00354.x
- Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. 2019. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int. J. Mol. Sci. 20: 1381. https://doi.org/10.3390/ijms20061381
- Walle T. 2011. Bioavailability of resveratrol. Ann. NY Acad. Sci. 1215: 9-15. https://doi.org/10.1111/j.1749-6632.2010.05842.x
- Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK. 2004. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32: 1377-1382. https://doi.org/10.1124/dmd.104.000885
- Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS, et al. 2002. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 19: 1907-1914. https://doi.org/10.1023/A:1021414129280
- Wenzel E, Somoza V. 2005. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 49: 472-481. https://doi.org/10.1002/mnfr.200500010
- Orsini F, Verotta L, Klimo K, Gerhauser C. 2016. Synthesis of resveratrol derivatives and in vitro screening for potential cancer chemopreventive activities. Arch. Pharm. Chem. Life Sci. 349: 414-427. https://doi.org/10.1002/ardp.201600022
- Liu Q, Kim C, Jo YH, Kim SB, Hwang BY, Lee MK. 2015. Synthesis and biological evaluation of resveratrol derivatives as melanogenesis inhibitors. Molecules 20: 16933-16945. https://doi.org/10.3390/molecules200916933
- Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, et al. 2011. Biosynthesis of (+)- catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253. https://doi.org/10.1016/j.enzmictec.2011.05.007
- Moon KO, Park H, Joo M, Ha KT, Baek NI, Park CS, et al. 2017. Glycosylation enhances the physicochemical properties of caffeic acid phenethyl ester. J. Microbiol. Biotechnol. 27: 1916-1924. https://doi.org/10.4014/jmb.1706.06017
- Park S, Moon K, Park CS, Jung DH, Cha J. 2018. Synthesis of aesculetin and aesculin glycosides using engineered Escherichia coli expressing Neisseria polysaccharea amylosucrase. J. Microbiol. Biotechnol. 28: 566-570. https://doi.org/10.4014/jmb.1711.11055
- Kim KH, Park YD, Park H, Moon KO, Ha KT, Baek NI, et al. 2014. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744: 147-156. https://doi.org/10.1016/j.ejphar.2014.10.013
- Kometani T, Nishimura T, Nakae T, Takii H, Okada S. 1996. Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucano-transferase from an Alkalophilic Bacillus species. Biosci. Biotechnol. Biochem. 60: 645-649. https://doi.org/10.1271/bbb.60.645
- Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619. https://doi.org/10.1016/j.carres.2009.04.019
- Park H, Kim J, Choi KH, Hwang S, Yang SJ, Baek NI, et al. 2012. Enzymatic synthesis of piceid glucosides using maltosyltransferase from Caldicellulosiruptor bescii DSM 6725. J. Agric. Food Chem. 60: 8183-8189. https://doi.org/10.1021/jf302127a
- Regev-Shoshani G, Shoseyov O, Bilkis I, Kerem Z. 2003. Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374: 157-163. https://doi.org/10.1042/BJ20030141
- Moon K, Cha J. 2020. Enhancement of antioxidant and antibacterial activities of Salvia miltiorrhiza roots fermented with Aspergillus oryzae. Foods 9: 34. https://doi.org/10.3390/foods9010034
- Park HJ, Lee EH, Jung HY, Kang IK, Cho YJ. 2020. Effects of phenolics from Oplismenus undulatifolius in α-MSH-stimulated B16F10 melanoma cells. J. Appl. Biol. Chem. 63: 89-93. https://doi.org/10.3839/jabc.2020.012
- Marier JF, Vachon P, Gritsas A, Zhang J, Moreau JP, Ducharme MP. 2002. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. J. Pharmacol. Exp. Ther. 302: 369-373. https://doi.org/10.1124/jpet.102.033340
- Remsberg CM, Yanez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM. 2008. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother. Res. 22: 169-179. https://doi.org/10.1002/ptr.2277
- Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
- Jun SY, Park KM, Choi KW, Jang MK, Kang HY, Lee SH, et al. 2008. Inhibitory effects of arbutin-β-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol. Lett. 30: 743-748. https://doi.org/10.1007/s10529-007-9605-1
- Lee TH, Seo JO, Baek SH, Kim SY. 2014. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. 22: 35-40. https://doi.org/10.4062/biomolther.2013.081
- Yoon HS, Hyun CG, Lee NH, Park SS, Shin DB. 2016. Comparative depigmentation effects of resveratrol and its two methyl analogues in α-melanocyte stimulating hormone-triggered B16/F10 murine melanoma cells. Prev. Nutr. Food Sci. 21: 155. https://doi.org/10.3746/PNF.2016.21.2.155
- Kim JK, Park KT, Lee HS, Kim M, Lim YH. 2012. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: comparison with mulberroside A. J. Enzyme Inhib. Med. Chem. 27: 495-503. https://doi.org/10.3109/14756366.2011.598866
- Satooka H, Kubo I. 2012. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg. Med. Chem. 20: 1090-1099. https://doi.org/10.1016/j.bmc.2011.11.030
- Jeong ET, Jin MH, Kim MS, Chang YH, Park SG. 2010. Inhibition of melanogenesis by piceid isolated from Polygonum cuspidatum. Arch. Pharm. Res. 33: 1331-1338. https://doi.org/10.1007/s12272-010-0906-x
- Ozaki S, Imai H, Iwakiri T, Sato T, Shimoda K, Nakayama T, et al. 2012. Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana. Biotechnol. Lett. 34: 475-481. https://doi.org/10.1007/s10529-011-0784-4
- Stivala LA, Savio M, Carafoli F, Perucca P, Bianchi L, Maga G, et al. 2001. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem. 276: 22586-22594. https://doi.org/10.1074/jbc.M101846200
- Waffo Teguo P, Fauconneau B, Deffieux G, Huguet F, Vercauteren J, Merillon J-M. 1998. Isolation, identification, and antioxidant activity of three stilbene glucosides newly extracted from Vitis vinifera cell cultures. J. Nat. Prod. 61: 655-657. https://doi.org/10.1021/np9704819
- Fang JG, Lu M, Chen ZH, Zhu HH, Li Y, Yang L, et al. 2002. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chem. Eur. J. 8: 4191-4198. https://doi.org/10.1002/1521-3765(20020916)8:18<4191::AID-CHEM4191>3.0.CO;2-S
- Henriquez C, Lopez-Alarcon C, Lutz MGM, Speisky H. 2011. Time-dependence of ferric reducing antioxidant power (FRAP) index in Chilean apples and berries. Arch. Latinoam. Nutr. 61: 323-332.
- Ohguchi K, Tanaka T, Kido T, Baba K, Iinuma M, Matsumoto K, et al. 2003. Effects of hydroxystilbene derivatives on tyrosinase activity. Biochem. Biophys. Res. Commun. 307: 861-863. https://doi.org/10.1016/S0006-291X(03)01284-1
- Lee HS, Lee BW, Kim MR, Jun JG. 2010. Syntheses of resveratrol and its hydroxylated derivatives as radical scavenger and tyrosinase inhibitor. Bull. Korean Chem. Soc. 31: 971-975. https://doi.org/10.5012/bkcs.2010.31.04.971
- Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. 1995. Effects of α-and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem. 59: 143-144. https://doi.org/10.1271/bbb.59.143
- Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, et al. 2006. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 70: 1386-1394. https://doi.org/10.1271/bbb.50657
- Jiang JR, Yuan S, Ding JF, Zhu SC, Xu HD, Chen T, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657. https://doi.org/10.1007/s00253-008-1683-z