• Title/Summary/Keyword: Glycine max L.

Search Result 433, Processing Time 0.034 seconds

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Identification of Quantitative Trait Loci (QTLs) Associated with Oil and Protein Contents in Soybean (Glycine max L.) (콩에서 Microsatellite marker률 이용한 oil 및 단백질 함량의 양적형질 유전자좌의 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.453-458
    • /
    • 2004
  • Soybean oil and protein contents are very important as a nutritional component of food. The seed composition as oil and protein are polygenic traits. In this study, the Keunolkong${\times}$Iksan10 populations were evaluated with SSR markers to identify QTLs related to oil and protein contents. Three related independent QTLs near the marker satt100 on LG C2, satt546 on LG D1b+W and satt418 on LG L were identified oil contents. The three independent QTLs near the marker satt556 on LG B2, satt414 on LG J and satt238 on LC L were identified of protein contents. In the results of this study, common QTLs on LG L was associated with seed oil and protein contents. In the result of this study, it is believed that the seed composition material as oil and protein contents were mainly controlled by environmental stresses and they are seed size on genotypes.

Effect of NaCl Stress on Inorganic Ion, L-Proline, Sugar and Starch Content of Soybean Seedlings

  • Cho, Jin-Woong;Kim, Choong-Soo;Jung D. So
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.2
    • /
    • pp.75-79
    • /
    • 2002
  • This study conducted to elucidate the change of the cation content (Na$^{+}$, $K^{+}$, and $Ca^{2+}$), the L-proline content, and the sugar and starch content in the stems, roots, and leaves of three cultivars of the 30 days old seedling soybeans (Glycine max L. cv. Danwonkong, Hwang-keumkong, and Kwangankong) after 100 mM NaCl stress containing 1/2 Hoaglands nutrient solution in the sand culture. The reduction of the dry matter weight after 100 mM NaCl treatment among cultivars was higher in the order of Kwangankong, Danwonkong, and Hwang-keumkong. The highest reduction of the dry matter weight was occurred at the roots among three parts of plant. The Na$^{+}$ content increased with NaCl treatment in overall and specially greatly increased in roots and stems. The $K^{+}$ and $Ca^{2+}$ content decreased with NaCl treatment at the roots and stems. The $K^{+}$ content, however, at the leaves increased in all three cultivars with the NaCl treatment. The L-proline content with NaCl stress increased greatly. The increment of the L-proline content at the stems and roots of Hwangkeumkong was lower than that of other two cultivars, K wangankong and Danwonkong. The sugar content decreased with NaCl treatment at the stems and leaves. The starch content also decreased at the stems and leaves with NaCl treatment.aCl treatment.

Detection of Xanthomonas axonopodis pv. glycines and Survey on Seed Contamination in Soybean Seeds Using PCR Assay (PCR Assay 이용 콩 종자에서 Xanthomonas axonopodis pv. glycines 검출 및 종자오염 조사)

  • Hong, Sung-Jun;Hong, Yeon-Kyu;Lee, Bong-Choon;Lim, Mi-Jung;Yoon, Young-Nam;Hwang, Jae-Bok;Song, Seok-Bo;Park, Sung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2007
  • Xanthomonas axonopodis pv. glycines is the causal agent of bacterial pustule of soybean(Glycine max. (L.) Merr), which is one of the most prevalent bacterial diseases in Korea. In this study, Polymerase Chain Reaction (PCR) assay was applied to detect Xanthomonas axonopodis pv. glycines and to survey on seed contamination in 36 soybean cultivars of Korea. And we have to compare PCR assay with dilution-plating assay of detection and identification. We confirmed detection of pathogen from artificial infected seeds and natural Infected seeds using PCR assay. This assay gave results similar to a seed-wash dilution plating assay and proved more effective than classical methods. Results of survey on seed contamination by X. axonopodis pv. glycines from 36 cultivar seeds showed that the pathogen was detected from Pungsan-namulkong, Mallikong, Taekwangkong, Daemangkong, Ajukkarikong using PCR assay. Therefore, The PCR assay provides a sensitive, rapid tool for the specific detection of X. axonopodis pv. glycines in soybean seeds.

The Factors on Somatic Embryogenesis of Soybean [Glycine max. (L.) Merrill]

  • Kim, Kyong-Ho;Kim, Hag-Sin;Oh, Young-Jin;Suh, Sug-Kee;Kim, Tae-Soo;Park, Ho-Kee;Park, Moon-Soo;Kim, Seok-Dong;Yeo, Up-Dong
    • Journal of Plant Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.123-128
    • /
    • 2000
  • To enhance in vitro plantlet regeneration efficiency of soybean through embryogenesis, the culture conditions such as material part and size of immature seed, 2,4-D, pH and solidifying agents for somatic embryogenesis were investigated. Somatic embryogenesis was induced from the immature embryo, immature cotyledon and embryonic axis explants of the immature seed on MS medium supplemented with 2.0 mg/L 2,4-D. The highest rate (up to 22.9%) of somatic embryogenesis was obtained from the immature cotyledon, following embryonic axis and the immature embryo. The rate varied with the developmental stages of seed. The maximum rate (25.4%) of embryogenesis was obtained from 3-4 mm length of the seed (after 25 days of flowering). The optimum concentration of 2,4-D for embryogenesis was 10 mg/L. The optimum pH was at 5.8 and solidifying agent for medium was better with 0.4% gelrite than with agar. For rapid multiplication of shoot tips from the germinating somatic embryos, they were cultured on MS medium containing 2 mg/L indole-3-butyyic acid (IBA) and 1 mg/L 6-benzyladenine (BA). After then somatic embryos with one and three cotyledons were transferred to the growth regulator free medium. The medium exhibited the higher rate (ca. 50%) of development than the multiplication medium.

  • PDF

Forage Yield and Quality of Summer Grain Legumes and Forage Grasses in Cheju Island

  • Kang, Young-Kil;Cho, Nam-Ki;Yook, Wan-Bang;Kang, Min-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.245-249
    • /
    • 1998
  • Soybean [Glycine max (L.) Merr.), mungbean [Vigna radiata (L.) Wilcz.], cowpea [V. unguiculata (L.) Walp.], adzuki bean [V. angularis (Willd.) Ohwi & Ohashi], maize [Zea mays L.], sorghum [Sorghum bicolor (L.) Moench], sorghum $\times$ sudangrass [So bicolor intraspecific hybrid], and Japanese millet [Echinochloa crusgalli var. frumentacea (Link) W.F. Wight] were grown at two planting dates (18 June and 15 July) at Cheju in 1997 to select the best forage legumes adapted to Cheju Island for grass-legume forage rotation. Averaged across planting dates and cultivars, dry matter (DM), crude protein (CP), and total digestible nutrient (TDN) yields were 5,646, 1,056, and 3,637 kg/ha for soybean, 4,458, 676, and 2,661 kg/ha for mungbean, 3,289, 553, and 2,055 kg/ha for cowpea, 3,931, 674, and 2,489 kg/ha for adzuki bean, 12,695, 969, and 7,642 kg/ha for maize, 17,071, 1,260, and 8,857 kg/ha for sorghum, 16,355, 1,163, and 8,543 kg/ha for sorghum $\times$ sudangrass hybrid, and 8,288, 929, and 4,091 kg/ha for Japanese millet. Soybean was higher in CP, ether extract (EE), and TON content but was lower in nitrogen free extract content compared with the three other legumes. The legumes had much higher CP (13.7 to 21.9%), EE (2.42 to 6.23%), and TDN (58.7 to 69.9%) content but lower in crude fiber (CF) content (17.3 to 25.3%) than did the grasses tested except maize which had relatively lower CF content but higher TDN content. These results suggest that soybean could be the best forage legume for grass-legume forage rotation in the Cheju region.

  • PDF

Identification of QTLs controlling somatic embryogenesis using RI population of cultivar ${\times}$ weedy soybean

  • Choi, Pilson;Mano, Yoshiro;Ishikawa, Atsuko;Odashima, Masashi;Umezawa, Taishi;Fujimura, Tatsuhito;Takahata, Yoshihito;Komatsuda, Takao
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • Quantitative trait loci (QTLs) controlling ability of somatic embryogenesis were identified in soybean. A frame map with 204-point markers was developed using an RI population consisting of 117 $F_{11}$ lines derived from a cross between cultivar 'Keburi' and a weedy soybean 'Masshokutou Kou 502'. The parents differed greatly in their abilities of somatic embryogenesis using immature cotyledons as explants. The ability of somatic embryogenesis was evaluated in five different experiments: the $F_{11}$ (evaluated in 1998) and $F_{15}$ (2002) generations cultured on basal media supplemented with $40\;mg\;l^{-1}$ 2,4-D (2,4-D1998 and 2,4-D2002), $F_{14}$ (2001) generation on medium with $40\;mg\;l^{-1}$ 2,4-D and high sucrose concentration [2,4-D2001 ($30\;g\;l^{-1}$ sucrose)], and the $F_{11}$ (1998) and $F_{12}$ (1999) generations on medium with $10\;mg\;l^{-1}$ NAA (NAA1998 and NAA1999). The RILs showed wide and continuous variations in each of the five experiments. In the composite interval mapping analysis, 2 QTLs were found in group 8 (D1b + W, LOD = 5.42, $r^2$ = 37.5) in the experiment of 2,4-D1998 and in group 6 (C2, LOD = 6.03, $r^2$ = 26.0) in the experiment of 2,4-D2001 (high concentration sucrose). In both QTLs, alleles of 'Masshokutou Kou 502' with high ability of somatic embryogenesis contributed to the QTLs. For the other three experiments, no QTL was detected in the criteria of LOD >3.0, suggesting the presence of minor genes.

DNA Sequence Variation of Candidate Gene for Salt Tolerance in Soybean Mutant

  • Chang Yeok Moon;Byeong Hee Kang;Woon Ji Kim;Sreeparna Chowdhury;Sehee Kang;Seo Young Shin;Wonho Lee;Hyeon-Seok Lee;Bo-Keun Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.259-259
    • /
    • 2022
  • Soil salinity is a major factor that reduces crop yields. The amount of soil affected by salinity is about 83 million hectares (FAO 2000), which is increasing due to the effects of climate change. In soybean [Glycine max (L.) Merr.], nutritional properties such as protein, starch, and sucrose content together with biomass and yield tends to reduce due to excessive salt. As a result of QTL mapping using the 169 F2:3 population from the KA-1285 (salt-tolerant) × Daepung (salt-sensitive) in a previous study, two major QTLs (Gm03_39796778 and Gm03_40600088) related to salt tolerance were found on chromosome 3. In this study, the CDS region of the Gmsalt3 gene was analyzed using the ABI 3730x1 DNA Analyzer (Macrogen, Korea). The sequence of Gmsalt3 gene in KA-1285 was compared with Williams 82.a4.vl and PI483463 (Glycine soja). Two transversions were found at exon6 in KA-1285 and PI483463. Currently, whole genome sequencing and variation analysis using the Illumine Novaseq 6000 machine (Illumina, USA) are in progress. The results of this study can provide useful molecular markers for the selection of salt-tolerant soybeans and can be used as basic data for future salt-tolerant gene research.

  • PDF

Enhanced Biosynthesis of ${\alpha}$-tocopherol in Transgenic Soybean by Introducing ${\gamma}$-TMT gene

  • Kim Young-Jin;Seo Hong-Yul;Park Tae-Il;Baek So-Hyeon;Shin Woon-Chul;Kim Hyun-Soon;Kim Jung-Gon;Choi Yong-Eui;Yun Song-Joong
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.203-209
    • /
    • 2005
  • This study was conducted to improve tocopherol (vitamin E) composition in soybean (Glycine max) by introducing a gamma-tocopherol methyl transferase (${\gamma}$-TMT) gene via Agrobacterium tumefaciens-mediated transformation. Immature cotyledon explants were cocultivated with Agrobacterium tumefaciens. Putative transgenic embryos were selected from immature cotyledons on MS medium supplemented with 40 mg/L 2,4-D containing 100 mg/L kanamycin, 500 mg/L carbenicillin and 250 mg/L cefotaxime. Plantlets were developed from somatic embryos, and then transferred to soil. Nineteen regenerated plantlets obtained on the selection medium from 1,460 cotyledons. However, only 9 plantlets were confirmed as transformed plants. Integration of the transgene into the soybean genomic DNA was confirmed by PCR and Southern blot analysis. HPLC analysis showed that the content of ${\alpha}$-tocopherol in transgenic soybean seeds (AT-1) was approximately 4-fold higher than that of non-transgenic plants. Conclusively, we obtained the transgenic soybean having increased ${\alpha}$-tocopherol content by the overexpression of ${\gamma}$-TMT transgene.

Long-Term Study of Weather Effects on Soybean Seed Composition

  • Bennett John O.;Krishnan Hari B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • A long-term study initiated in 1989 at San-born Field, Columbia, Missouri, was designed to evaluate the affect of environmental factors, nitrogen application, and crop rotation on soybean (Glycine max [L.] Merr.) seed composition. Soybeans were grown as part of a four- year rotation which included corn (Zea maize L.), wheat (Triticum aestivum L.), and red clover (Trifolium pratense L.). Results from soil tests made prior to initiation of the study and subsequently every five years, were used to calculate application rates of nitrogen, phosphorus, and potassium necessary for target yield of pursuant crops. In the experimental design, nitrogen was applied to one-half of the plot on which the non-leguminous crop, either corn or wheat was grown. Analysis of soybean seed by near infrared reflectance spectroscopy collected over an 11-year period revealed a linear increase in protein and decrease in oil content. Application of nitrogen fertilizer to non-leguminous crops did not have an apparent effect on total protein or oil content of subsequent soybean crop. Analysis of soybean seed proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with computer­assisted densitometry revealed subtle changes in the accumulation of seed proteins. Immunoblot analysis using antibodies raised against the $\beta-subunit$ of $\beta-conglycinin$ showed a gradual increase in the accumulation of the 7S components during successive years of the experiment. A linear increase in temperature and decrease in rainfall was observed from the onset of data· collection. Higher temperatures during the growing season have been linked to increased protein and diminished oil content of soybean, thus changes observed in this study are possibly related to climatic conditions. However, crop rotation and subsequent changes in soil ecology may contribute to these observed changes in the seed composition.