Browse > Article

Long-Term Study of Weather Effects on Soybean Seed Composition  

Bennett John O. (Department of Agronomy, University of Missouri)
Krishnan Hari B. (USDA-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.50, no.1, 2005 , pp. 32-38 More about this Journal
Abstract
A long-term study initiated in 1989 at San-born Field, Columbia, Missouri, was designed to evaluate the affect of environmental factors, nitrogen application, and crop rotation on soybean (Glycine max [L.] Merr.) seed composition. Soybeans were grown as part of a four- year rotation which included corn (Zea maize L.), wheat (Triticum aestivum L.), and red clover (Trifolium pratense L.). Results from soil tests made prior to initiation of the study and subsequently every five years, were used to calculate application rates of nitrogen, phosphorus, and potassium necessary for target yield of pursuant crops. In the experimental design, nitrogen was applied to one-half of the plot on which the non-leguminous crop, either corn or wheat was grown. Analysis of soybean seed by near infrared reflectance spectroscopy collected over an 11-year period revealed a linear increase in protein and decrease in oil content. Application of nitrogen fertilizer to non-leguminous crops did not have an apparent effect on total protein or oil content of subsequent soybean crop. Analysis of soybean seed proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis in conjunction with computer­assisted densitometry revealed subtle changes in the accumulation of seed proteins. Immunoblot analysis using antibodies raised against the $\beta-subunit$ of $\beta-conglycinin$ showed a gradual increase in the accumulation of the 7S components during successive years of the experiment. A linear increase in temperature and decrease in rainfall was observed from the onset of data· collection. Higher temperatures during the growing season have been linked to increased protein and diminished oil content of soybean, thus changes observed in this study are possibly related to climatic conditions. However, crop rotation and subsequent changes in soil ecology may contribute to these observed changes in the seed composition.
Keywords
crop rotation; seed composition; soybeans;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson, T-H and T. R. Gray. 1990. Soil microbial carbon uptake characteristics in relation to soil management. FEMS MicroBioI. Ecol. 74 11-20
2 Buchholz, D. D. 1983. Soil test interpretations and recommendations handbook Dept of Agronomy. University of Missouri ColumbIa, MO
3 Campbell, C.A., M. Schnitzer, G P Lafond, R. P. Zentner, and J E Knipfel 1991 Thirty-year crop rotations and management practices effects on soil and amino nitrogen. Soil Sci. Soc. Am. J. 55 . 739-745   DOI
4 Dodor, D E. and M. A. Tabatabai 2003 Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci 166 7-13
5 Elvazi, F., M R Bayan, and K. Schmidt 2003. Select soil enzyme activities in the historic Sanborn Field as affected by long-term cropping systems. Commun Soil Sci. Plant Anal. 34 . 2259-2275   DOI   ScienceOn
6 Gneshop, C M. and G C. Fahey 2001. Comparison of quality characteristics of soybeans from Brazil, China, and the United States. J. Agric. Food Chem. 49 : 2669-2673   DOI   ScienceOn
7 Hanson, W. D, R C Leffel, and R. W. Howell. 1961 Genetic analysis of energy production in the soybean. Crop Sci 1 : 121-126   DOI
8 Haynes, R J. and R. Tregurtha 1999 Effects of increasing periods under intensive arable vegetable production on biological, chemical and physical indices of soil quality. BioI Fert Soils 28 . 259-266   DOI   ScienceOn
9 Hsieh, Y-P. 1992. Pool size and mean age of stable soil organic carbon in cropland. Soil Sci. Soc. Am J. 56 460-464   DOI
10 Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680-685   DOI   PUBMED   ScienceOn
11 Yaklich, R. W and B T. Vinyard. 2004 Estimating soybean seed protein and oil concentration before harvest. J. Am OiI Chem. Soc 81 : 189-194   DOI   ScienceOn
12 Yaklich, R W., B, Vinyard, M. Camp, and S. Douglass 2002. Analysis of seed protein and oil from soybean Northern and Southern Region Uniform Tests. Crop Sci. 42 : 1504-1515   DOI
13 Nakasathien, S., D W Israel, R. F. Wilson, and P Kwanyuen 2000. Regulation of seed protein concentration in soybean by supra-optimal nitrogen supply. Crop Sci 40 1277-1284   DOI
14 Gneshop, C. M., C T. Kadzere, G M Clapper, E A Flickinger, L L Bauer, R. L Frazier, and G C Fahey. 2003 Chemical and nutritional characteristics of United States soybeans and soybean meals. J Agric Food Chem 51 . 7684-7691   DOI   ScienceOn
15 Anderson, T-H and K. H. Domsch 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil BioI Biochem. 21 : 471-480   DOI   ScienceOn
16 Reeves, D W 1997 The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Tillage Res 43 . 131-137   DOI   ScienceOn
17 Shukla, M. K., R Lal, and M. Ebinger. 2004. soil quality indicators for the North Appalachian Experimental Watersheds in Coshocton Ohio. Soil Sci 169 . 195-205   DOI   ScienceOn
18 Lavelle, P 2000 Ecological challenges for soil science. Soil Sci 165 73-86
19 Sexton, P. J , S L. Naeve, N. C. Paek, and R. Shibles. 1998. Sulfur availability, cotyledon nitrogen:sulfur ratio, and relative abundance of seed storage proteins of soybean of soybean Crop Sci. 38 . 983-986   DOI   ScienceOn
20 Krishnan, H., G Jiang, A. M. Krishnan, and W J. Wiebold. 2000 Seed storage protein composition of non-nodulating soybean (Glycine max (L ) Merr.) and its influence on protein quality. Plant Sci. 157: 191-199   DOI   ScienceOn
21 Hickman, M. V. 2002. Long-term tillage and crop rotation effects on soil chemical and mineral properties. J. Plant Nutr. 25 1457-1470   DOI   ScienceOn
22 Jordan, D., R. J. Kremer, W A Berfield, K. Y Kim, and V. N. Cacnio. 1995. Evaluation of micobial methods as potential indicators of soil quahty in historical agricultural fields. BioI Fert soils 19 : 297-302   DOI   ScienceOn
23 Chung, J., H. L. Babka, G. L. Graef, P E. Staswick, D. J. Lee, P B. Cregan, R C. Shoemaker, and J. E. Specht 2003 The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43 : 1053-1067   DOI
24 Paek, N C., P.J Sexton, S L Naeve, and R Shibles 2000. Differential accumulation of soybean seed storage protein subunits in response to sulfur and nitrogen nutritional sources. Plant Prod Sci. 3 268-274   DOI
25 Vanotti, M. B. and L. G. Bundy. 1995. Soybean effects on soil nitrogen availability in crop rotations Ag. J 87 . 676-680   DOI   ScienceOn
26 Xie, Z -P, C. Staehelin, H. Bierheilig, A Wiemken, S Jabboun, W.J. Broughton, R Voegeli-Lange, and T Boller. 1995. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol. 108 : 1519-1525   DOI
27 Kim, H., M. Y. Hirai, H Hayashi, M Chino, S. Naito, and T. Fujiwara. 1999. Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage protein gene by sulfur and nitrogen nutrition. Planta 209 . 282-289   DOI   ScienceOn
28 Ohtake, N., T Kawachi, I Okuyama, H. Fujikake, K Sueyoshi, and T. Ohyama 2002 Effect of short-term application of nitrogen on the accumulation of beta-subunit of beta-conglycinin in nitrogen-starved soybean (Glycine max L.) developing seeds. Soil Sci Plant Nutr 48 31-41
29 McCallister, D. L. and W. L. Chem. 2000 Organic carbon quantity and forms as influenced by tillage and cropping sequence Commun. Soil Sci Plant Anal 31 465-479   DOI   ScienceOn
30 SAS Institute 1993. SAS user's guide. SAS Institute, Cary, NC
31 Sparhng, G, R. L. Parfitt, A. E. Hewitt, and L. A Schipper. 2003. Three approaches to define desired soil organic matter contents. J Environ Qual. 32 : 760-766   DOI
32 Katsvairo, T. W and W. J Cox 2000. Economics of cropping systems featuring different rotations, tillage, and management. Ag J 92 : 485-493   DOI
33 Moore, J M., S Klose, and in A. Tabatabai. 2000 Soil microbial biomass carbon and nitrogen as affected by cropping systems. BioI Fert Soils. 31 200-210   DOI   ScienceOn
34 Simpson A. M. and J. R. Wilcox. 1983. Genetic and phenotypic associations of agronomic characteristics in 4 high protein soybean Glyczne-Max populations. Crop Sci. 23 : 1077-1081   DOI
35 Fehr, W. R., J. A Hoeck, S. L Johnson, P. A Murphy, J D. Nott, G. I Padilla, and G. A Welk. 2003 Genotype and environment influence on protein components of soybean. Crop Sci 43 . 511-514   DOI
36 Bethlenfalvay, G J., R. P. Schreiner, and K. L. Mihara. 1997. Mycorrhizal fungi effects on nutrient composition and yield of soybean seeds. J. Plant Nutr. 20: 581-591   DOI   ScienceOn
37 Piper E. Land K. J. Boote. 1999. Temperature and cultivar effects on soybean seed oil and protein concentrations. J. Am. Oil Chem Soc 76 1233-1241   DOI
38 Wolf. R B.. J. F. Canvins. R Kleiman. and L. T. Black. 1982. Effect of temperature on soybean seed constituents: oil, protein, moisture, fatty acids, amino acids, and sugars. J. Am Oil Chem. Soc. 59 : 230-232   DOI
39 Knstensen, H, L. K. Debosz, and G W McCarty 2003. Short-term effects of tillage on mineralization of nitrogen and carbon in soil. Soil Biol Biochem 35 : 979-986   DOI   ScienceOn
40 West, T.O. and W M. Post. 2002. soil organic carbon sequestration rates by tillage and crop rotation. A global data analysis. soil Sci Soc Am. J. 66 : 1930-1946   DOI