• Title/Summary/Keyword: Glue

Search Result 397, Processing Time 0.03 seconds

The Effect of Casting Conditions on the Fluidity during Lost Foam Casting of Al Alloy (알루미늄 합금의 소실모형주조 시 유동도에 미치는 주조 조건의 영향)

  • Shin, Seung-Ryoul;Han, Sang-Won;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.34-39
    • /
    • 2004
  • The effects of casting condition and hot melt glue during Lost Foam Casting were investigated on the fluidity of Al alloy melt. The fluidity increased linearly with increasing pouring temperature in thick castings but non-linearly in thin casting due to the difference in main heat flow direction. The metal flow velocity was in range of $0.5{\sim}2.7$ cm/s in no evacuation condition and the minimum value of it was measured after the melt flow through the hot melt barrier. The mold evacuation improved the metal flow velocity by around $0.5{\sim}1$ cm/s. And the reaction zone layer thickness was about 1 cm in no-evacuation conditions but about 0.6 cm in mold evacuation condition of 710 torr due to the easier removal of pyrolsis product of EPS. And hot melt barrier thickness of 0.6 mm increased the reaction zone layer thickness up to about 2.5 cm. The fluidity decreased remarkably with an enlarged thickness of hot melt due to a lot of pyrolysis products.

A Strategy for the Simulation of Adhesive Layers

  • Ochsner, A.;Mishuris, G.;Gracio, J.
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • The high accurate simulation of very thin glue layers based on the finite element method is still connected to many problems which result from the necessity to construct a complicated mesh of essentially different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of convergence. However, the implementation of special transmission elements along the glue ling and special edge-elements in the near-edge region would lead to a dramatic decrease of number of finite elements in the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical transmission conditions and the behavior near the free edge are investigated in the context of the single-lap tensile-shear test of adhesive technology.

  • PDF

A Study on Geometrical Glue Operation between Non-manifold Models (비다양체 모델간의 기하학적 접합 연산에 관한 연구)

  • Park, Sang-Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • Non-manifold topological operations such as Euler and Boolean operations provide a versatile environment for modeling domains. The implementation of these operations raises geometrical issues that need to be addressed to ensure the topological validity of the underlying model, and they uses the glue operation which provides a basic method to modify the topology of non-manifold models when vertices, edges and faces are contacting each other. Topological information such as adjacency relationships should be inferred when gluing non-manifold models. Two methods of reasoning can be employed to find the topological information : topological reasoning and geometrical reasoning. The topological method can infer the adjacency relationships by using stored topological information. On the other hand, the geometrical method can find topological ambiguities by considering the geometrical shape at the local area of gluing when the topological relations were not stored. This paper describes the geometrical reasoning method.

  • PDF

Optimal Design for Tubular SOFC Testing Jig (관형 고체산화물연료전지 테스트 지그 최적화)

  • Choi, Hoon;An, Gwon-Seong;Shin, Chang-Woo;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.303-306
    • /
    • 2009
  • High temperature solid oxide fuel cells (SOFCs) offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. Solid oxide fuel cells in several different designs have been investigated; these include planar and tubular geometries. The tubular type cell is widely researched due to it have advantages about thermal expansion and sealing issues. Unfortunately, lab scale tubular cell for testing has thermal expansion and sealing problems. The previous Jig for lab scale tubular cell testing has many sealing problems. When we feed fuel gas to jig inlet, ceramic glue sealant has amount of gas expansion pressure, because temperature of feeding gas changes ambient temperature to high temperature ($700{\sim}900^{\circ}C$). Furthermore, when we carry out long time test, something like degradation test, crack of ceramic glue sealant due to weakness of mechanical properties can make stop working the test. Additionally, we reduce setting process for assembling, because micanite is not required drying or debinding process.

  • PDF

Preparation of Stick Type Solid Glue as Paper Adhesive Using Mixed Seaweed Extract

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.269-277
    • /
    • 2019
  • Seaweed extracts, namely carrageenan obtained from Grateloupia elliptica and algin obtained from Laminaria, were employed as adhesive agents to synthesize solid adhesives for paper. Carrageenan from Grateloupia elliptica with the highest adhesive strength and lgin from Laminaria with the highest compressive strength was selected. The selected carrageenan and algin were mixed in a ratio of 7:3, and the mixture was employed as an adhesive agent. At a high temperature, sodium stearate(used as a solidifying material) oxidized the seaweed extracts. Consequently, carrageenan and algin were added to the final manufacturing process. The adhesive strength of the final synthesized solid adhesive is found to be 3.02 MPa and the compressive strength is found to be 30.5 N. Compared to the adhesive strength (2.95 MPa) and compressive strength (30.11 N) of commercial solid adhesives, the obtained results indicate superior adhesion characteristics. Furthermore, the proposed adhesive is environment-friendly because the presence of volatile organic compounds, formaldehyde, and heavy metals(such as chromium, lead, and cadmium) were not detected. Moreover, when used, the flatness of paper was twice that of commercial solid paper adhesives. Hence, the proposed adhesive can provide excellent adhesion, stability, and usability.

Study on the filling material for the painting wall layer of the temple wall painting using a natural adhesive (천연 접착제를 활용한 사찰벽화 화벽층의 충전 재료연구)

  • Kim, Soon-Kwan;Jeong, Hye-Young
    • 보존과학연구
    • /
    • s.29
    • /
    • pp.255-278
    • /
    • 2008
  • Considering the physical quality of the wall body in this study we tried to select a replenishing that is proper for filling the cracked part of the painting wall layer and apply the natural adhesives that have traditionally been used, investigating whether it is possible to substitute those for the chemical adhesive which is used at present time. The result of this study showed the red algae adhesive was, in a weathering environment, as safe as the synthetic resin originated from the polyvinyl acetate which is used generally on the present spot, and it was concluded that although the starch adhesive displayed its superiority in enhancing the strength of the earth mortar and its work disposition, it seemed proper for it to be used as a filling adhesive for the first or midterm layer because it showed a surface hardening phenomenon. And also the glue and fish glue were judged they were not qualified as a filling adhesive due to mold occurring in a environment of high moisture that is a biological problem, showing at same time a weak physical feature in a weathering environment. Therefore it would be possible to use the red algae adhesive or starch one substituting them for the original one sold on the present market, if among natural adhesives the weak points of the them were to be corrected.

  • PDF

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

Characterization and Comparison of Oriental Ink Sticks (동양 전통 먹(墨)의 이화학적 성상 비교 분석)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.4
    • /
    • pp.74-81
    • /
    • 2008
  • The writing brush, ink stick, paper, and ink stone were the four precious things of the studying and recording in oriental world until even nowaday. The oriental paper was comparatively well evaluated in many papers and reviews, but it is difficult to find some scientific reports or reviews about the ink stick. In this paper, the scientific aspect of ink sticks of oriental maine three country(Korea, China, Japan) were evaluated by the physical, chemical and microscopic analysis. The result could summarized as fellows; 1. The Korean lampblack ink stick contains more carbon and less nitrogen and the Chinese ink sticks contain less carbon and more oxygen. 2. The Korean lampblack and cowhide glue contain relatively higher amount of sulphur. 3. The particle size distribution of carbon in the ink stick was not change after grinding in the ink stone. 4. The particle size of carbon and the pore size in the charcoal ink sticks of three country were larger than those of the lampblack ink sticks. 5. The ink solution of the charcoal ink sticks shows high roundness on Hanji while the ink solution of the lampblack ink sticks is spread readily to Hanji surface. 6. The change of whiteness in printing of the ink sticks is notable in thermal treatment.

Characterization of Plasma Proteins from Bloods of Slaughtered Cow and Pig and Utilization of the Proteins as Adhesives (도축혈액 혈장 단백질의 특성 및 접착제로의 응용)

  • Park, Eun-Hee;Lee, Hwa-Hyoung;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.123-126
    • /
    • 1996
  • Simple and rapid method of purification of plasma proteins from bloods of slaughtered animals was developed and the proteins were applied to plywood products as a blood 히ue to utilize waste materials. Plasma protein was obtained by adding 2% trichloroacetic acid (TCA) or 0.6 N HCI as optimal concentration to the supernatant, after centrifugation of bloods. Molecular properties of beef and pig plasma proteins were examined on SDS-PAGE. Application of blood glue to plywood was quite satisfactory compared to the synthetic amino resin by tensile-shear test for the strength of adhesive bonding.

  • PDF

Pre-processing System for Converting Shell to Solid at Selected Weldment in Shell FE Model (선체 Shell FE 모델 내 용접부의 Solid 요소변환 자동화 시스템)

  • Yoo, Jinsun;Ha, Yunsok
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.11-15
    • /
    • 2016
  • FE analyses for weldment of ship structure are required for various reasons such as stress concentration for bead tow, residual stress and distortion after welding, and hydrogen diffusion for prediction of low temperature crack. These analyses should be done by solid element modeling, but most of ship structures are modeled by shell element. If we are able to make solid element in the shell element FE modeling it is easily to solve the requirement for solid elements in weld analysis of large ship structures. As the nodes of solid element cannot take moments from nodes of shell element, these two kinds of element cannot be used in one model by conventional modeling. The PSCM (Perpendicular shell coupling method) can connect shell to solid. This method uses dummy perpendicular shell element for transferring moment from shell to solid. The target of this study is to develop a FE pre-processing system applicable at welding at ship structure by using PSCM. We also suggested glue-contact technique for controlling element numbers and element qualities and applied it between PSCM and solid element in automatic pre-processing system. The FE weldment modeling through developed pre-processing system will have rational stiffness of adjacent regions. Then FE results can be more reliable when turn-over of ship-block with semi-welded state or ECA (Engineering critical assessment) of weldment in a ship-block are analyzed.