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Abstract: The high accurate simulation of very thin glue layers based on the finite element method is still
connected to many problems which result from the necessity to construct a complicated mesh of essentially
different sizes of elements. This can lead to a loss of accuracy, unstable calculations and even loss of
convergence. However, the implementation of special transmission elements along the glue line and special
edge-elements in the near-edge region would lead to a dramatic decrease of the number of finite elements in
the mesh and thus, prevent unsatisfactory phenomena in numerical analysis and extensive computation time. The
theoretical basis for such special elements is the knowledge about appropriate transmission conditions and the
edge effects near the free boundary of the adhesive layer. Therefore, recently proposed so-called non-classical
transmission conditions and the behavior near the free edge are investigated in the context of the single-lap

tensile-shear test of adhesive technology.

Keywords: adhesive layers, interface, transmission conditions, finite element method, free-edge effects

1. Introduction

Different approximation procedures for the solution of
partial differential equations are known (cf. Figure 1) and
each of the method possess its own advantages or dis-
advantages. The finite element method (FEM) is derived
from variation principles or the principle of virtual work
and results in a symmetric system of equations with a
diagonally dominant matrix. Many commercial codes are
available and such codes are widely used for industrial
simulations. Even with commercial codes, arbitrary geom-
etries and non-linearities, e.g. plastic or visco-elastic mate-
rial behavior, can nowadays be considered. The finite dif-
ference method (FDM) is derived from differential equa-
tions of the corresponding field problem and can result in
a non-symmetric and diagonally dominant matrix. This
method is easily to transform into computational codes but
reveals its disadvantages for complex geometries, singular
crack behavior or non-continuous solutions. The boundary
element method (BEM) is derived from integral equations
and results in a non-symmetric and full matrix. The advan-
tage of this method is that only the boundary needs to be
discretisized. The main disadvantage is that arbitrary inho-
mogeneous structures and non-linearities are difficult to
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transform completely into integral equations. Therefore, this
method is reserved for special applications, e.g. fracture
mechanics.

Nevertheless, the application of the finite element method
requires a lot of experience and many problems are still
unsolved or unsatisfactory with respect to economic require-
ments. The high-accurate simulation of thin adhesive layers
requires in the framework of the finite element simulation
the introduction of a huge amount of finite elements. The
generation of such computational models is on the one
hand difficult to automatize and extremely time-consuming
and on the other hand later on, the solving of the resulting
system of equations may also take considerable time. Fur-
thermore, complicated meshes with elements of essentially
different sizes and deformed transition elements can lead to
numerical problems, such as loss of accuracy or even loss
of convergence[2,3]. A further problem is connected with
the fact that the aspect ratio, i.e. length-width ratio, is
limited for classical finite elements to a maximum number
of 1:2 in order to avoid numerical instability. The improve-
ment of such calculations is therefore not only an economic
requirement but also the necessity for a better dimensioning
of structural applications which will lead to maximum
utilization of the materials and higher reliability and service
life of entire structures and applications.

A simplified adhesively bonded joint under shear load is
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Figure 1. Numerical approximation procedures for partial dif-

ferential equations.
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Figure 2. Schematic representation of an adhesively bonded
joint.

shown in Figure 2 with its geometrical dimensions. The real
three-dimensional behavior can be approximated by two-
dimensional limiting cases in order to reduce the dimen-
sionality (this leads to significant less finite elements in the
computational model): the plane strain case which holds
inside the joint and the plane stress case which holds at the
free surface. In the following, we are going to present and
to investigate so called non-classical transmission condi-
tions which are the theoretical basis for the introduction of
novel finite elements for adhesive layers. It should be men-
tioned here that the overall deformation behavior is deter-
mined by the plane strain case. However, the total descrip-
tion based on two-dimensional models requires also the
consideration of the plane stress case.

2. Transmission Conditions

The idea of transmission conditions can easily be intro-
duced based on simple one-dimensional structural elements,
such as springs or rods (cf. Figure 3). The relative displace-
ments of both ends for symmetric loading, [#.] = wm-(-n),
can be related to the acting force F/ in the spring or the
stress ¢ in the rod according to Eq. (1) (&: spring stiffness;
E: Young's modulus; A: cross-sectional area; /: length).

spring
-F -u, k

-F, -u, = X i T
- —
€} o
E A !
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Figure 3. Simple one-dimensional structural elements.

Table 1. Possible sets of transmission conditions along the line
x =10 depending on the relative properties of the thin inter-
mediate layer. 2D case

Interface Transmission conditions
soft [w)-a:0,=0 [1e]-a17. =0 [d,] =0 [a:] =0
comparable [u,]= 0 [m] =0 [dy] =0 [ =0
stiff [1,] =0 [ =0 [ roica: du/dy) [d.] =0

Table 2. Parameters afy) for the plane strain and plane stress
Case

Case [} daz [

: - 21+ o)1 =2¢) 4h(1+ ) 2hE
plane strain o § £ 1P
B 2h(1 =17} 4h{1+ v)
plane stress - 7 ohE

x

#—- F

Figure 4. Two-dimensional mesh (details) and boundary con-
ditions.
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Recently, so-called non-classical transmission conditions
for two-dimensional problems were proposed which relate
the difference of displacements [&] and stresses [ o] at the
adhesive/adherend interface (cf. line C, D in Figure 2) to the
behavior in the middle of the adhesive layer (cf. line B in
Figure 2, x=0). Table 1 and 2 summarize these non-
classical transmission conditions for isotropic elastic mate-
rial behavior[4,5]. The elastic constants £ and v are related
to the adhesive layer of thickness 2h.
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Figure 6. Stress orthogonal the bond line for an adhesive with v = 0.39

The classification soft, comparable and stiff relates to the
relationship between the stiffness of the adhesive and the
adherend (£/E;). The formulae in Table 2 have been found
under the assumption that the material parameters of the
adhesive layer do not change perpendicular to the glue line.
General expressions which incorporate any functional de-
pendency can be found in[6].

The knowledge about the validity of these conditions will
enable the derivation of novel elements.

3. Finite Element Modeling

The wvalidity of the indicated non-classical transmission
conditions will be numerically investigated in the frame-
work of the single-lap tensile-shear test of adhesive techno-
logy (cf. Figure 4)[7]. Later on, this procedure will be used
for the experimental verification of the novel computation
method. Figure 5 shows the high mesh density which is re-
quired for accurate solutions especially near the free bound-
ary of the adhesive layer. Special elements with reduced
integration using an assumed strain formulation written in
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and £ = 14.96 MPa.

natural coordinates which insures good representation of the
shear strains in the element were used. A commercial finite
element software (MSC.Marc) was used for simulating the
mechanical behavior of the thin adhesive layer with a thick-
ness of 24 =30 mm. In the following, the results are pres-
ented for stepped brass adherends (£ = 119704 MPa, v =
0.3395, length 106 mm, width 25 mm, total depth 12 mm)
and an adhesive (£'=14.96 MPa; v=0.39) which can be
classified as soft according to Table 1. We assumed for
these calculations that the adhesive layer is isotropic and
homogeneous. Both cases, i.e. the plane strain and plane
stress case were investigated. However, to reduce the amount
of presented results, only the plane strain case is presented
here. It should be mentioned here that the plane stress case
reveals similar results.

4. Results

First of all, Figure 6 shows the displacement and stress
distribution perpendicular to the glue line, this means along
the line where v=0 holds, in order to verify some basic
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Figure 7. Displacement distribution for lines B, C and D.
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Figure 8. Normal and shear stress distribution for lines B, C and D.
a) -2.2 - b) -1.5 - -
plane strain | plane strain i
E ] — ) = =
E 244 | e a0, £ -2.0
g i A j
" | . 2.5+
- & i
=] =] 2.
F’: - 35:' 3.0 < /’ o ”
g 23 _/_/———\\\ E 41 wvalidity of transm. condition
ﬁ.E - N =354 (y=5963mm)
= § = )}
= -3.0 4 =, 4,0 - fu,]
= |E=14.96 MPa 7 i |E= 1496 MPa s
0.39 ve=03 L _ =R
'32U-|-|-|-|-|- AS— T T T T
-6 -4 -2 0 2 4 6 590 592 594 596 598 600
y-coordinate. mm y-coordinate, mm

Figure 9. Verification of the first transmission condition along the imperfect interface (plane sirain).

assumptions used for the derivation of the transmission this result holds for any line y = const (except the region
conditions. It can be seen that the justified linear behavior near the free boundary). The behavior of the &, component
for the displacements and the constant behavior for the results from the averaging of the adhesive and adherend
stresses inside the adhesive layer are fulfilled. Furthermore, values at the interface node. However, the correct extra-
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Figure 10. Verification of the second transmission condition along the imperfect interface (plane strain).
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Figure 11. Verification of the third transmission condition along the imperfect interface (plane strain).
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Figure 12. Verification of the fourth transmission condition along the imperfect interface (plane strain).
polation of this value (i.e. constant value in the whole ad- necessary to refine significantly the finite element mesh
hesive layer) can be done without any loss of generality of also in this region. However, it would increase the total
the presented results. To avoid this behavior it would be amount of unknowns in such a way that it would be
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difficult to compute the 2D problem on a standard PC with
1.5 GB of RAM.

Figures 7 and 8 illustrate the displacement and stress
distribution along the glue line (x=0) and the interface
lines C and D (cf. Figure 1). These values which were de-
rived from FEM analysis will be evaluated according to the
relationships given in Table 1 and 2 in order to investigate
the validity of the given conditions.

Figures 9~12 show the evaluation of all four transmis-
sion conditions given in Table 1 along the whole glue line
and additionally, for magnifications near the free surface. It
can be seen in Figures 9 and 10 that the transmission
conditions are fulfilled along a very long range of the glue
line and that only very near the free surface the conditions
fail. In this region, also the influence of the stress singula-
rity becomes visible. Thus, special singularity elements need
to be derived in order to offer a complete set of special
adhesive elements for the whole range of the glue line. The
validity of the transmission conditions is based in our eval-
uation on a 1% criterion for the deviation between the left
and right hand side of the equations presented in Table 1.

However, the application of the 1% criterion is difficult
to realize for the jump [¢,] and [¢.] shown in Figures 11
and 12 because the wvalues should be equal to zero.
Nevertheless, it can be seen that the conditions are fulfilled
in the same range as indicated in Figures 9 and 10.

5. Conclusions and Outlook

In the present work, non-classical transmission conditions
were presented and their validity investigated in the frame-
work of the single-lap tensile-shear test of adhesive techno-
logy. It could be shown that the proposed transmission
conditions are valid over a very long range of the glue line.
Only near the free surface, the conditions fail and the size
of this zone is obtained more or less independently of the
evaluated transmission condition.

The knowledge about the validity region makes it pos-
sible to drastically decrease the number of finite elements
in the constructed mesh by introducing special transmission
elements instead of the thin intermediate zone between the
different materials and also to prevent unsatisfactory phe-
nomena in the numerical analysis. The development of such
special elements and the implementation into a finite ele-
ment code is the topic of our future research work. Further-
more, non-linear material, i.e. plastic and visco-elastic, will
be investigated and corresponding transmission conditions
will be derived and their validity examined.
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