• Title/Summary/Keyword: Glucosinolates

Search Result 99, Processing Time 0.036 seconds

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Evaluation of Individual Glucosinolates, Phytochemical Contents, and Antioxidant Activities under Various Red to Far-Red Light Ratios in Three Brassica Sprouts (적색/원적색광 조사 비율에 따른 3종 배추과 채소 새싹의 Glucosinolate 함량 및 항산화 기능성 평가)

  • Jo, Jung Su;Lee, Jun Gu
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.415-423
    • /
    • 2018
  • The aim of this study was to evaluate the individual glucosinolate (GSL), total phenol, total flavonoid, and vitamin C content, and antioxidant activity under various light quality condition, mainly focusing on red (R) to far-red (FR) light ratios in three Brassica sprouts (radish, Chinese cabbage, and broccoli). Three R/FR ratio of 0.6, 1.3, and 2.0 were exposed to 5-day old sprouts for 48 h in a controlled environment, and the targeted phytochemical contents and antioxidant activities were compared with three separate control plot of dark, fluorescent, and red:blue 8:2 conditions. Total GSL content was highest in broccoli among the cultivars throughout the respective treatments, and increased with the increasing of R/FR ratio in the broccoli sprouts, while the content showed non-significant results in the Chinese cabbage sprouts. The progoitrin, a major GSL in Chinese Cabbage and broccoli, content decreased by upto 38% and 69%, respectively, with decreasing the R/FR ratio compared to the control plots (fluorescent, red:blue 8:2, and dark condition). The contents of phenol, flavonoid, and vitamin C were lowest in dark condition in all the three Brassica sprouts. The total phenol content and antioxidant activities increased with decreasing the R/FR ratio in all the Brassica sprouts, while total flavonoid and vitamin C content showed different patterns depending upon the Brassica sprouts. These results suggest that additional use of FR is expected to improve the functional quality of Brassica sprouts in different ways.

Antioxidant and Anti-adipogenic Effects of Kohlrabi and Radish Sprout Extracts (콜라비 새싹 추출물과 무순 추출물의 항산화 및 지방세포 분화 억제 활성)

  • Lee, Young-Jun;Kim, Jae-Hwan;Oh, Ji-Won;Shin, Gi-Hae;Lee, Jong Seok;Cho, Ju-Hyun;Park, Jin-Ju;Lim, Jeong-Ho;Lee, Ok-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.531-537
    • /
    • 2014
  • Common cruciferous vegetables, kohlabi (Brassica oleracea) and radish (Raphanus sativus), contain phytochemicals such as glucosinolates and carotenoids. Therefore, this study investigated the antioxidant and anti-adipogenic effects of kohlrabi sprout extract (KSE) and radish sprout extract (RSE). The total carotenoid and glucosinolate contents of KSE and RSE were $39.50{\pm}0.67$ and $76.73{\pm}2.75mg/g$, respectively. The total glucosinolate contents of KSE and RSE were $2.65{\pm}0.02$ and $8.13{\pm}0.54mg/g$, respectively. The in vitro-antioxidative activities of KSE and RSE were significantly increased in a dose-dependent manner. Furthermore, ${\beta}$-carotene and glucosinolate-enriched KSE and RSE significantly inhibited lipid accumulation and reactive oxygen species production during the adipogenesis of 3T3-L1 preadipocytes. These results suggest that glucosinolate-enriched KSE and RSE, especially RSE, can be used in the treatment of obesity and as a natural source of antioxidants.

Effects of Electro-conductivity on Growth of Beet and Turnip in the Reclaimed Land Soil (간척지 토양에서 양액의 전기전도도가 비트 및 순무의 생장에 미치는 영향)

  • Jo, Ji-Young;Sung, Ho-Young;Chun, Jin-Hyuk;Park, Jong-Seok;Park, Sang-Un;Park, Young-Jun;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.197-206
    • /
    • 2018
  • BACKGROUND: The present study aimed to examine the crops capable of growing and adapting to the external environment and various stresses of reclaimed agriculture land for the development of high value-added agricultural utilization technology based on reclaimed land through standardization and empirical study of cultivation environment for cultivating crops. METHODS AND RESULTS: Two crops namely turnips and beets were selected for the salt tolerance test of soil environmental conditions on reclaimed land. Turnip and beet seedlings were planted on the soil collected at the 'Seokmun' reclaimed land. There are five treatments such as non-treatment, 1.0, 2.0 (control), 4.0 and $8.0dS{\cdot}m^{-1}$ of EC. The contents of betacyanin in beet roots was highest in control and decreased with increasing salt concentration. The GSL contents in the turnip roots waswere highest at EC 2.0 and decreased with increasing salt concentration, whereas those in turnip leaves waswere high both in the non-treated control and atthe EC 1.0-treatment. But, tThere was, however, no statistical differences among the treatments. CONCLUSION: The degree of salt tolerance of crops was examined, and the limit EC iswas expected to be $3.0{\sim}4.0dS{\cdot}m^{-1}$ as reported to date. If the soil improvement is performed and irrigation systems are used in the actual reclaimed land, the EC of supplied irrigation will be low, and desalination effecttreatment by the lower EC of the supplied irrigation on the soil will lead to more favorable soil condition of the rhizosphere and cultivation environment offor the crops than those in the port experiment. Therefore, monitoring the salinity, water content and ground water level will enable prediction of the rhizosphere environment, and setting up irrigation management and supplying irrigation will lead to crop cultivation results that are close to normal.

Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal

  • Yusuf, Hassan Ali;Piao, Minyu;Ma, Tao;Huo, Ruiying;Tu, Yan
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.556-566
    • /
    • 2022
  • Objective: This study aimed to determine the appropriate supplementation level of lactic acid bacteria (LAB; Lactobacillus plantarum and Bacillus clausii), yeast (Saccharomyces cariocanus and Wickerhamomyces anomalus) for degrading free gossypol and glucosinolate in the fermented total mixed ration (TMR) containing cottonseed meal (CSM) or rapeseed meal (RSM), to improve the utilization efficiency of these protein sources. Methods: For LAB, L. plantarum or B. clausii was inoculated at 1.0×108, 1.0×109, 1.0×1010, and 1.0×1011 colony-forming unit (CFU)/kg dry matter (DM), respectively. For yeast, S. cariocanus or W. anomalus was inoculated at 5×106, 5×107, 5×108, and 5×109 CFU/kg DM, respectively. The TMR had 50% moisture and was incubated at 30℃ for 48 h. After fermentation, the chemical compositions, and the contents of free gossypol and glucosinolate were determined. Results: The results showed that the concentration of free gossypol content was reduced (p<0.05), while that of the crude protein content was increased (p<0.05) in the TMR containing CSM inoculated by B. clausii (1×109 CFU/kg DM) or S. cariocanus (5×109 CFU/kg DM). Similarly, the content of glucosinolate was lowered (p<0.05) and the crude protein content was increased (p<0.05) in TMR containing RSM inoculated with B. clausii (1×1010 CFU/kg DM) or S. cariocanus (5×109 CFU/g DM). Conclusion: This study confirmed that inclusion of B. clausii with 1.0×109 or 1.0×1010 CFU/kg DM, or S. cariocanus (5×109 CFU/kg DM) to TMR containing CSM/RSM improved the nutritional value and decreased the contents of anti-nutritional factors.

Recent Research Status of Postharvest Management of Broccoli (브로콜리 수확후 관리의 최근 연구 동향)

  • Choi, Ji-Weon;Lee, Woo-Moon;Kwak, Jung-Ho;Kim, Won-Bae;Kim, Ji-Gang;Lee, Seung-Ku;Cho, Mi-Ae
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.497-502
    • /
    • 2011
  • Broccoli is considered as one of the functional foods to offer a hearty supply of the nutrient-rich vegetable in the world. Broccoli contains high level of phytochemicals, and that is selected as one of the top 10 vegetables for human health promotion. Especially, glucosinolates and flavonoids are well known as anti free oxygen radicals in vegetables and fruits. In Korea, broccoli consumption has increased to well known on the health-beneficial vegetables since 2000. However, broccoli has many problems of postharvest management since the quality of harvested heads quickly declines. Major problems are the floret yellowing, wilting, off-odor, and decay. The multiple postharvest applications improve broccoli quality and cold treatment including pre-cooling extends on the shelf-life with circumstance of optimum storage which is 0℃ temperature and a range of 95-100% relative humidity. Controlled atmosphere or modified atmosphere packaging can be used as supplemental treatments to extend postharvest life. 1-2% O2 + 5-10% CO2 is currently recommended for broccoli. Postharvest management is important for broccoli because price fluctuations depend on harvest time and quality. In this study, we tried to review physiological change of broccoli after the harvest, storage method, and various techniques to optimize quality during distribution.

Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala) (생장단계에 따른 케일 내 글루코시놀레이트 함량)

  • Lee, Heon-Hak;Yang, Si-Chang;Lee, Min-Ki;Ryu, Dong-Ki;Park, Suhyoung;Chung, Sun-Ok;Park, Sang Un;Lim, Yong-Pyo;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The aim of this study was to investigate the amounts of glucosinolates (GSL) in kale at various development stages. Kale varieties 'Manchoo Collard' and 'TBC' were cultivated from 20 February 2012 to 3 July 2013 in the greenhouse at Chungnam National University. During the cultivation periods, samples were harvested at 35, 63, 91, 105, 119, and 133 days after sowing (DAS) and the amount of GSL quantified by HPLC. Ten types of GSL (progoitrin, sinigrin, glucoalyssin, gluconapin, glucoiberverin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were observed in 'TBC', whereas nine types of GSL (the same as above, except glucoiberverin) were identified in 'Manchoo Collard'. The amount of total GSL in 'Manchoo Collard' was comparatively higher at 133 DAS (mean $8.64{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($1.16{\mu}mol{\cdot}g^{-1}$ dry weight, DW) of cultivation. In the case of 'TBC', the amount of GSL was higher at 91 DAS (mean $13.41{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($0.31{\mu}mol{\cdot}g^{-1}$ dry weight, DW). Sinigrin was the most abundant GSL (57% of total GSL) in 'Manchoo Collard' at 133 DAS and was also highest (44%) in 'TBC' at 91 DAS. Together, progoitrin, sinigrin, glucobrassicin, and gluconasturtiin, the precursor of crambene, allylisothiocyanate, indol-3-cabinol, and phenethylisothiocyanate accounted for 94 and 78% of GSL in 'Manchoo Collard' and 'TBC', respectively. Our results demonstrate that the amounts of GSL, which have potential anti-carcinogenic activity, change during development in kale.

Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea (유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석)

  • Lee, Jeongyeo;Min, Sung Ran;Jung, Jaeeun;Kim, HyeRan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.189-204
    • /
    • 2019
  • In this study, we analyzed the changes in glucosinolate content and gene expression in TO1000DH3 and Early big seedling upon methyl jasmonate (MeJA) treatment. Analysis of glucosinolate contents after MeJA treatment at $200{\mu}M$ concentration showed that the total glucosinolate content increased by 1.3-1.5 fold in TO1000DH3 and 1.3-3.8 fold in Early big compared to those before treatment. Aliphatic glucosinolates, progoitrin and gluconapin, were detected only in TO1000DH3, and the changes in the content of neoglucobrassicin were the greatest at 48 hours after MeJA treatment in TO1000DH3 and Early big. The transcriptomic analysis showed that transcripts involved in stress or defense reactions, or those related to growth were specifically expressed in TO1000DH3, while transcripts related to nucleosides or ATP biosynthesis were specifically expressed in Early big. GO analysis on transcripts with more than two-fold change in expression upon MeJA treatment, corresponding to 12,020 transcripts in TO1000DH3 and 13,510 transcripts in Early big, showed that the expression of transcripts that react to stimulus and chemical increased in TO1000DH3 and Early big, while those related to single-organism and ribosome synthesis decreased. In particular, the expression increased for all transcripts related to indole glucosinolate biosynthesis, which is associated with increase in glucobrassicin and neoglucobrassicin contents. Upon MeJA treatment, the expression of AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010) increased only in TO1000DH3, while the expression of Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), and GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530) increased specifically in Early big.

Changes in Abscisic Acid, Carbohydrate, and Glucosinolate Metabolites in Kimchi Cabbage Treated with Glutamic Acid Foliar Application under Extremely Low Temperature Conditions (이상저온 시 글루탐산 엽면 처리에 의한 배추의 ABA, 탄수화물 및 Glucosinolate 대사체 변화)

  • Sim, Ha Seon;Jo, Jung Su;Woo, Ui Jeong;Moon, Yu Hyun;Lee, Tae Yeon;Lee, Hee Ju;Wi, Seung Hwan;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2022
  • Glutamic acid is a precursor of essential amino acids that play an important role in plant growth and development. It is one of the biostimulants that reduce cold stress damage by stimulating biosynthetic pathways leading to cryoprotectants. This study evaluated the effects of glutamic acid foliar application on Kimchi cabbage under low-temperature stress. There were six treatments, combining three photo-/dark periods temperature levels (11/-1℃ extremely low, E; 16/4℃ moderately low, M; and 21/9℃ optimal, O) with and without glutamic acid foliar application (0 and 10 mg·L-1; Glu 0 and Glu 10). Glutamic acid foliar application was sprayed once 10 days after transplanting, and then temperature treatment immediately after glutamic acid foliar application was conducted for up to four days. After four days of treatment, abscisic acid (ABA), phaseic acid (PA), dihydrophaseic acid (DPA), and abscisic acid-glucose ester (ABA-GE) contents were higher with Glu 10 treatment than Glu 0 treatment in M treatment. Glucose content was highest in E with Glu 10 treatment (52.1 mg·100 g-1 dry weight), while fructose content was highest in O with Glu 0 treatment (134.6 mg·100 g-1 dry weight). The contents of glucolepiddin (GLP), glucobrassicin (GBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (GNBS), and gluconasturtiin (GNS) were highest among all treatments in E with Glu 10 treatments (0.72, 2.05, 1.67, 9.40 and 0.85 µmol·g-1 dry weight). After two days of treatment, rapid changes in PA and DPA contents of E with Glu 10 treatments were confirmed, and several individual glucosinolate contents (GLP, GBS, 4MGBS, GNBS, and GNS) were significantly different depending on low temperature and glutamic acid treatment. In addition, the content of fructose was significantly lower than that of O treatment in E and M treatments after four days of treatment. Therefore, although the changes in PA, DPA, glucose, fructose, and individual glucosinolates according to low temperature and glutamic acid foliar treatment were shown. A clear correlation between low temperature and glutamic acid effects could not be evaluated. Results indicated that Brassica crops are cryophilic vegetables, do not react sensitively to low temperatures, and mostly have cold resistance.