DOI QR코드

DOI QR Code

Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala)

생장단계에 따른 케일 내 글루코시놀레이트 함량

  • Lee, Heon-Hak (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Yang, Si-Chang (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Lee, Min-Ki (Department of Bio-Environmental Chemistry, Chungnam National University) ;
  • Ryu, Dong-Ki (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Park, Suhyoung (Department of Horticultural Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA)) ;
  • Chung, Sun-Ok (Department of Biosystems Machinery Engineering, Chungnam National University) ;
  • Park, Sang Un (Department of Crop Science, Chungnam National University) ;
  • Lim, Yong-Pyo (Department of Horticultural Science, Chungnam National University) ;
  • Kim, Sun-Ju (Department of Bio-Environmental Chemistry, Chungnam National University)
  • 이헌학 (충남대학교 생물환경화학과) ;
  • 양시창 (충남대학교 생물환경화학과) ;
  • 이민기 (충남대학교 생물환경화학과) ;
  • 류동기 (충남대학교 바이오시스템기계공학과) ;
  • 박수형 (농촌진흥청 국립원예특작과학원) ;
  • 정선옥 (충남대학교 바이오시스템기계공학과) ;
  • 박상언 (충남대학교 식물자원학과) ;
  • 임용표 (충남대학교 원예학과) ;
  • 김선주 (충남대학교 생물환경화학과)
  • Received : 2014.01.28
  • Accepted : 2014.11.02
  • Published : 2015.04.30

Abstract

The aim of this study was to investigate the amounts of glucosinolates (GSL) in kale at various development stages. Kale varieties 'Manchoo Collard' and 'TBC' were cultivated from 20 February 2012 to 3 July 2013 in the greenhouse at Chungnam National University. During the cultivation periods, samples were harvested at 35, 63, 91, 105, 119, and 133 days after sowing (DAS) and the amount of GSL quantified by HPLC. Ten types of GSL (progoitrin, sinigrin, glucoalyssin, gluconapin, glucoiberverin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were observed in 'TBC', whereas nine types of GSL (the same as above, except glucoiberverin) were identified in 'Manchoo Collard'. The amount of total GSL in 'Manchoo Collard' was comparatively higher at 133 DAS (mean $8.64{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($1.16{\mu}mol{\cdot}g^{-1}$ dry weight, DW) of cultivation. In the case of 'TBC', the amount of GSL was higher at 91 DAS (mean $13.41{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($0.31{\mu}mol{\cdot}g^{-1}$ dry weight, DW). Sinigrin was the most abundant GSL (57% of total GSL) in 'Manchoo Collard' at 133 DAS and was also highest (44%) in 'TBC' at 91 DAS. Together, progoitrin, sinigrin, glucobrassicin, and gluconasturtiin, the precursor of crambene, allylisothiocyanate, indol-3-cabinol, and phenethylisothiocyanate accounted for 94 and 78% of GSL in 'Manchoo Collard' and 'TBC', respectively. Our results demonstrate that the amounts of GSL, which have potential anti-carcinogenic activity, change during development in kale.

케일 내 유용성분인 GSL 함량은 작물의 재배방법과 기후조건, 영양상태, 유전적 특성 등 재배 환경에 따라 영향을 받을 수 있으므로 본 연구에서는 생장단계에 따른 케일(Brassica oleracea var. acephala) 내 GSL 함량을 조사하였다. 케일 품종은 'Manchoo Collard', 'TBC' 두 품종으로 재배기간은 2012년 2월 20일부터 동년 7월 3일까지 133일이었으며 수확시기는 파종 후 35, 63, 91, 105, 119, 133일(days after sowing, DAS)이었다. 'TBC'에서는 총 10종의 GSL(progoitrin, sinigrin, glucoalyssin, gluconapin, glucoiberverin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, neoglucobrassicin)가 분리 및 동정되었으나 'Manchoo Collard'에서는 glucoiberverin를 제외한 9종의 GSL가 분리 및 동정되었다. 'Manchoo Collard'의 GSL 함량은 133DAS에서(평균 $6.12{\mu}mol{\cdot}g^{-1}$ DW)가장 높았고, 35DAS($1.16{\mu}mol{\cdot}g^{-1}$ DW)에서 가장 낮았다. 'TBC'의 GSL 함량은 91DAS(평균 $13.41{\mu}mol{\cdot}g^{-1}$ DW)에서 가장 높았고, 35DAS($0.31{\mu}mol{\cdot}g^{-1}$ DW)에서 가장 낮았다. 총 GSL 함량 중 sinigrin이 'Manchoo Collard'(133DAS)에서 57%, 'TBC'(91DAS)에서 44%로 가장 높았다. 항암효과가 뛰어난 crambene, allyl isothiocynate, indole-3-cabinol, phenethyl isothiocyanate의 전구체인 progoitrin, sinigrin, glucobrassicin, gluconasturtiin은 'Manchoo Collard'와 'TBC'의 총 GSL 함량 중 각각 94, 78%로 나타나 두 품종 모두 항암 효과를 가질 것으로 기대된다.

Keywords

References

  1. Agerbirk, N. and C.E. Olsen. 2012. Glucosinolate structures in evolution. Phytochemistry 77:16-45. https://doi.org/10.1016/j.phytochem.2012.02.005
  2. Cartea, M.E., P. Velasco, S. Obregon, G. Padilla, and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
  3. Choi, Y.H., K.Y. Park, S.M. Lee, M.A. Yoo, and W.H. Lee. 1995. Inhibitory effect of the fresh juice of kale on the genotoxicity of aflatoxin B1. Korean J. Genetic. 17:183-190.
  4. Clarke, D.B. 2010. Glucosinolates, structures and analysis in food. Anal. Methods 2:310-325. https://doi.org/10.1039/b9ay00280d
  5. Fahey, J.W., A.T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  6. Goncalves, A.L.M., M. Lemos, R. Niero, S.F. de Andrade, and E.L. Maistro. 2012. Evaluation of the genotoxic and antigenotoxic potential of Brassica oleracea L. var. acephala D.C. in different cells of mice. J. Ethnopharmacol. 143:740-745. https://doi.org/10.1016/j.jep.2012.07.044
  7. Hagen, S.F., G.I.A Borge, K.A. Solhaug, and G.B. Bengtsson. 2009. Effect of cold storage and harvest date on bioactive compounds in curly kale (Brassica oleracea L. var. acephala). Postharvest Biol. Technol. 51:36-42. https://doi.org/10.1016/j.postharvbio.2008.04.001
  8. Halkier, B.A. and L. Du. 1997. The biosynthesis of glucosinolates. Trends Plant Sci. 2:425-431. https://doi.org/10.1016/S1360-1385(97)90026-1
  9. Halvorsen, B.L., K. Holte, M.C.W. Myhrstad, I. Barikmo, E. Hvattum, S.F. Remberg, A.B. Wold, K. Haffner, H. Baugerod, L.F. Andersen, O. Moskaug, D.R. Jr. Jacobs DR. and R. Blomhoff. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132:461-471.
  10. Higdon, J.V., B. Delage, D.E. Williams, and R.H. Dashwood. 2007. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol. Res. 55:224-236. https://doi.org/10.1016/j.phrs.2007.01.009
  11. Hwang, E.S., E.Y. Hong and G.H Kim. 2012. Determination of bioactive compounds and anti-biocancer effect from extracts of Korean cabbage and cabbage. Korean J. Food Nutr. 25:259-265. https://doi.org/10.9799/ksfan.2012.25.2.259
  12. International Standards Organization. 1992. Rapeseed: Determination of glucosinolates. Part 1: Method using High performance liquid chromatography, p. 1-9. In: ISO 9167-1. Geneva, Switzerland.
  13. Keck, A.S. and J.W. Finley. 2004. Cruciferous vegetables: cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integr. Cancer Ther. 3:5-12. https://doi.org/10.1177/1534735403261831
  14. Kim, S.J., C. Kawaharada, S. Jin, M. Hashimoto, G. Ishii, and H. Yamauchi. 2007. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Biosci. Biotechnol. Biochem. 71:114-121. https://doi.org/10.1271/bbb.60400
  15. Kim, Y.S. and J.A. Milner. 2005. Targets for indole-3-carbinol in cancer prevention. J. Nutr. Biochem. 16:65-73. https://doi.org/10.1016/j.jnutbio.2004.10.007
  16. Kushad, M.M., A.F. Brown, A.C. Kurilich, J.A. Juvik, B.P. Klein, M.A. Wallig, and E.H. Jeffery. 1999. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 47:1541-1548. https://doi.org/10.1021/jf980985s
  17. Kushad, M.M., R. Cloyd, and M. Babadoost. 2004. Distribution of glucosinolates in ornamental cabbage and kale cultivars. Sci. Hortic. 101:215-221. https://doi.org/10.1016/j.scienta.2003.10.011
  18. Lee, S.M., S.H. Rhee, and K.Y. Park. 1997. Antimutagenic effect of various cruciferous vegetables in salmonella assaying system. J. Food Hyg. Saf. 12:321-327.
  19. Lim, H.S. 2002. The study for contents of sinigrin in dolsan leaf mustard kimchi during fementation periods. Korean J. Life Sci. 12:523-527. https://doi.org/10.5352/JLS.2002.12.5.523
  20. Magrath, R., F. Bano, M. Morgner, I. Parkin, A. Sharpe, C. Lister, C. Dean, J. Turner, D. Lydiate, and R. Mithen. 1994. Genetics of aliphatic glucosinolates. I. Side chain elongation in Brassica napus and Arabidopsis thaliana. Heredity 72: 290-299. https://doi.org/10.1038/hdy.1994.39
  21. Podseek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci. Technol. 40:1-11. https://doi.org/10.1016/j.lwt.2005.07.023
  22. Sun, B., N. Liu, Y. Zhao, H. Yan, and Q. Wang. 2011. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem. 124:941-947. https://doi.org/10.1016/j.foodchem.2010.07.031
  23. Zhang, Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: Chemistry and mechanisms. Cancer Res. 54:1976-1981.
  24. Zhang, Z., J.A. Ober, and D.J. Kliebenstein. 2006. The gene controlling the quantitative trait locus epithiospecifier modifier1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536. https://doi.org/10.1105/tpc.105.039602

Cited by

  1. Chemical Constituents of the Leaves of Brassica oleracea var. acephala vol.54, pp.5, 2018, https://doi.org/10.1007/s10600-018-2542-5
  2. Different vegetative growth stages of Kimchi cabbage (Brassica rapa L.) exhibit specific glucosinolate composition and content vol.59, pp.3, 2018, https://doi.org/10.1007/s13580-018-0040-0
  3. Effects of Temperature, Relative Humidity, and Carbon Dioxide Concentration on Growth and Glucosinolate Content of Kale Grown in a Plant Factory vol.10, pp.7, 2015, https://doi.org/10.3390/foods10071524