• Title/Summary/Keyword: Glucosidase

Search Result 1,231, Processing Time 0.038 seconds

Kinetic Modeling of the Enzymatic Hydrolysis of $\alpha$-Cellulose at High Sugar Concentration (순수 섬유소에 대한 고농도 당화공정의 동력학적 모사)

  • 오경근;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • For the effective ethanol fermentation, the high concentration of sugar as the substrate of microbial fermentation is required. The most important reason in the inefficient hydrolysis; the easy deactivation of enzyme by temperature or shear stress and the severe inhibition effects of its products. In our work, we comprehended the kinetic characteristics of cellulose and ${\beta}$-glucosidase in the progress of hydrolysis, and observed the potential inhibitory effects of the hydrolyzed products and the deactivation of enzymes. We also tried to present the kinetic model of enzymatic hydrolysis of cellulose, which is applicable to process at the high concentration of sugar. Cellulase and ,${\beta}$-glucosidase exhibit diverse kinetic behaviors. At a level of only 5g/$\ell$ of glucose, the ${\beta}$-glucosidase activity was reduced by more than 70%. This result means that ${\beta}$-glucosldase was the most severely inhibited by glucose. Also at l0g/$\ell$ of cellobiose, the cellulose lost approximately 70% of its activity. ${\beta}$-glucosldase was more sensitive to deactivation than cellulose by about 1.6 times. The comprehensive kinetic model in the range of confidence was obtained and the agreement between the model prediction and the experimental data was reasonably good, testifying to the validity of the model equations used and the associated parameters.

  • PDF

Cyanidin-3-O-glucoside Ameliorates Postprandial Hyperglycemia in Diabetic Mice (당뇨 마우스에서 cyanidin-3-O-glucoside의 식후 고혈당 완화 효과)

  • Choi, Kyungha;Choi, Sung-In;Park, Mi Hwa;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.32-37
    • /
    • 2017
  • Cyanidin-3-O-glucoside (C3G) shows anti-inflammatory and antioxidant effects; however, its effect on postprandial blood glucose levels remains unknown. Alpha-glucosidase inhibitors regulate post-prandial hyperglycemia by impeding carbohydrate digestion in the small intestine. Here, the effect of C3G on ${\alpha}-glucosidase$ and ${\alpha}-amylase$ inhibition and its ability to ameliorate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice were evaluated. ICR normal and STZ-induced diabetic mice were orally administered soluble starch alone or with C3G or acarbose. The half-maximal inhibitory concentrations of C3G for ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were 13.72 and $7.5{\mu}M$, respectively, suggesting that C3G was more effective than acarbose. The increase in postprandial blood glucose levels was more significantly reduced in the C3G groups than in the control group for both diabetic and normal mice. The area under the curve for the diabetic mice was significantly reduced following C3G administration. C3G may be a potent ${\alpha}-glucosidase$ inhibitor and may delay dietary carbohydrate absorption.

Stability and Modification of Aspergillus awamori $\alpha$-Glucosidase with $IO_4$-oxidized Soluble Starch (과요오드산-산화 가용성 전분에 의한 Aspergillus awamori $\alpha$-Glucosidase의 안정성 및 변형)

  • Ann Yong-Geun
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.4-10
    • /
    • 2005
  • Periodate-oxidized soluble starch increased pH stability of Aspergillus awamori a-glucosidase. After incubation for two hours, the enzyme in the absence of oxidized soluble starch was stable in the range of pH 3-7 at 40℃, pH 3-6 at 50℃ and the enzyme in the presence of oxidized soluble starch was stable in the range of pH 3-9 at 40℃, pH 3-8 at 50℃. At 60℃, the enzyme was stable in pH 3-6 regardless of the presence or absence of IO₄-oxidized soluble starch, but when IO₄-oxidized soluble starch existed in pH 5-6, remained activity of the enzyme increased 20% more than when it didn't exist. The enzyme modified with IO₄-oxidized soluble starch remained 70% of activity in pH 9, but native enzyme didn't remain, showing the increase of stability due to modification. In thermal stability, modified enzyme remained 12% at 50℃ and 7% at 80℃. But native enzyme remained 8% at 50℃ and didn't remain at more than 70℃. The result of HPLC analysis revealed the subunit of the enzyme at under pH 2 or over pH 9 was separated or the enzyme was denatured and conjugated. Protein structure of native enzyme was denatured by acidic and basic pH but was stable in the presence of IO₄-oxidized soluble starch.

Glycosidase Pattern of Bacteroides fragilis Roid 8 Isolated from a Korean Adult Feces (한국인 분변으로부터 분리된 Bacteroides fragilis Roid 8의 Glycosidase 패턴)

  • Ji, Geun-Eog;Lee, Se-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.191-195
    • /
    • 1993
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic bacteria. Amongst them, most prevalent bacteria are Bacteroides, Eubacterium, Peptococcus, Bifidobacteria. We isolated a Bacteroides fragilis strain from a Korean adult and examined various glycosidase activities of this strain. The activities of $N-acetyl-{\beta}-glucosaminidase,\;{\alpha}-fucosidase$, ${\beta}-glucuronidase$, chitobiase and PNPCase were stronger in Bacteroides fragilis Roid 8 than in other intestinal anaerobic bacteria. $N-acetyl-{\beta}-glucosaminidase$ was strongest, followed by ${\alpha}-fucosidase$, ${\beta}-glucuronidase$ and PNPCase. The activities of ${\beta}-galactosidase$, ${\beta}-xylosidase,\;{\alpha}-arabinofuranosidase$ were not present or very low. The activities of ${\alpha}-glucosidase$, ${\beta}-glucosidase$ and ${\alpha}-galactosidase$ were present but at a lower level than in Bifidobacterium. The effect of the carbon sources on the production of $N-acetyl-{\beta}-glucosaminidase$, ${\alpha}-fucosidase$, ${\beta}-glucuronidase$ and PNPCase of Bacteroides fragilis Roid 8 was investigated. :.actose and glucose lowered the production of the varous glycosidase enzymes studied in this work. In addition, we investigated the optimum temperature and pH of each glycosidase from Bacteroides fragilis Roid-8 using crude enzyme preparations.

  • PDF

Physiological Characteristics and Anti-diabetic Effect of Lactobacillus plantarum KI69 (Lactobacillus plantarum KI69의 생리적 특성 및 항당뇨 효과)

  • Kim, Seulki;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.223-236
    • /
    • 2019
  • This study aimed to investigate the physiological characteristics and anti-diabetic effects of Lactobacillus plantarum KI69. The α-amylase and α-glucosidase inhibitory activity of L. plantarum KI69 was 91.17±2.23% and 98.71±4.23%, respectively. The propionic, acetic, and butyric acid contents of the MRS broth inoculated with L. plantarum KI69 were 8.78±1.12 ppm, 1.34±0.07% (w/v), and 0.876±0.003 g/kg, respectively. L. plantarum KI69 showed higher sensitivity to penicillin-G, oxacillin, and chloramphenicol among 16 different antibiotics and showed the highest resistance to ampicillin and vancomycin. The strain showed higher β-galactosidase, β-glucosidase, and N-acetyl-β-glucosaminidase activities than other enzymes. Additionally, it did not produce carcinogenic enzymes, such as β-glucuronidase. The survival rate of L. plantarum KI69 in 0.3% bile was 96.42%. Moreover, the strain showed a 91.45% survival rate at pH 2.0. It was resistant to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus with the rates of 15.44%, 50.79%, 58.62%, and 37.85%, respectively. L. plantarum (25.85%) showed higher adhesion ability than the positive control L. rhamnosus GG (20.87%). These results demonstrate that L. plantarum KI69 has a probiotic potential with anti-diabetic effects.

Studies for Component Analysis, Antioxidative Activity and ${\alpha}-glucosidase$ Inhibitory Activity from Equisetum arvense (쇠뜨기(Equisetum arvense) 추출물의 항산화 활성 분석 및 ${\alpha}-glucosidase$ 저해활성)

  • Gua, Jia;Jin, Ying-Shan;Han, Woong;Shim, Tae-Heum;Sa, Jae-Hoon;Wang, Myeong-Hyeon
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • This study was carried out to investigate the chemical components, and antioxidative and $anti-{\alpha}-glucosidase$ activities of Equisetum arvense extracts. In Equisetum arvense extracts were composed of 53.20% of crude fiber, 20.42% of crude ash, 15.32% of crude protein and 2.21% of crude fat. Potassium was the most predominant mineral and followed by phosphorus, calcium, magnesium, and sodium. The contents of the unsaturated fatty acids, such as linolenic acid, linoleic acid, and palmitic acid, were higher than those of saturated fatty acids. Seventy percent ethanol extract exhibited antioxidative activity with $IC_{50}$ of $168.1\;{\mu}g/ml$. The Seventy percent methanol extract showed higher ${\alpha}-glucosidase$ inhibitory activity than other solvent extracts.

Evaluation of antioxidant, α-glucosidase inhibition and acetylcholinesterase inhibition activities of Allium hookeri root grown in Korea and Myanmar (국내 및 미얀마에서 재배된 삼채뿌리의 항산화, α-Glucosidase 저해 및 Acetylcholinesterase 저해 활성)

  • Park, Joo Young;Yoon, Kyung Young
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.239-245
    • /
    • 2016
  • This study was conducted to compare the functionality (antioxidant, anti-diabetic, and anti-dementia activities) of the methanol extract of Allium hookeri root grown in Korea (KR) and Myanmar (MR). The total polyphenol and flavonoid contents of KR and MR were 5.27 and 4.80 mg GAE/g, and 0.35 and 0.24 mg QE/g, respectively. KR contained significantly higher levels of total polyphenols and total flavonoids than those of MR (p<0.05). The IC50 values of KR and MR were 6.53 and 5.31 mg/mL, respectively, for DPPH radical scavenging activity. However, KR had a significantly higher ABTS radical scavenging activity, $Fe^{2+}$ chelating ability, and reducing power compared with those of MR (p<0.05). In the evaluation of anti-diabetic activity, KR showed significantly higher ${\alpha}-glucosidase$ inhibition activity than acarbose and MR at whole concentrations (p<0.05). KR and MR had acetylcholinesterase inhibition activities that of 51.44% and 44.33%, respectively, at a 50 mg/mL concentration. These results suggested that roots of A. hookeri, especially KR, could be useful in improving diabetic and dementia disorders due to their high antioxidant, anti-diabetic, and anti-dementia activities.

Anti-Oxidative and Anti-Diabetic Effects of Methanol Extracts from Medicinal Plants (약용식물 메탄올 추출물의 항산화 및 항당뇨 활성)

  • Lee, Youn Ri;Yoon, Nara
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.681-686
    • /
    • 2015
  • The purpose of this study was to measure total phenolic compounds as a measure of antioxidant activity as well as ${\alpha}$-amylase inhibitory and ${\alpha}$-glucosidase inhibitory activities as a measure of anti-diabetic efficacy in methanol extracts from 23 kinds of medicinal plants. Extracts of three medicinal plant species showing high total polyphenol contents were selected (Euonymus alatus stem, Taxus cuspidata fruit, and Eucommia ulmoides leaf). Extracts of six medicinal plant species showing over 60% DPPH radical scavenging activity were also selected [Eucommia ulmoides barks (80.10%), Lycium chinense roots (64.25%), Euonymus alatus stem (73.59%), Lespedeza cuneata (78.20%), Taxus cuspidata fruits (70.52%), and Tilia taquetii leaf and stem (67.81%)]. Regarding ${\alpha}$-glucosidase and ${\alpha}$-amylase inhibitory activities acarbose showing approximately 80% inhibitory activity was selected as a control group, and six species (Eucommia ulmoides heartwood, Eucommia ulmoides bark, Euonymus alatus stem, Dioscorea batatas, Coix lachryma-jobi, and Phaseolus radiatus) showed greater than 80% ${\alpha}$-glucosidase inhibitory activity. Extracts of nine medicinal plant. species showing over 80% ${\alpha}$-amylase inhibitory activity (Pueraria thunbergiana root, Eucommia ulmoides bark, Eucommia ulmoides leaf, Lycium chinense fruits, Euonymus alatus leaf and stem, Euonymus alatus stem, Sasa borealis whole, Dioscorea batatas leaf and stem, and Tilia taquetii leaf and stem). Based on these results, medicinal plants showing high antioxidant and antidiabetic activities can be used as fundamental products in developing new medicines, as well as functional foods to prevent adult disease.

Studies on the Cellulase. (V) -Fractionation of Cellulolytic Complex produced by Trichoderma $viride(O_2-1)$ (섬유소(纖維素) 분해효소(分解酵素)에 관(關)한 연구(硏究) (제5보(第5報)) -Trichoderma $(O_2-1)$가 생성(生成)하는 Cellulolytic Complex의 분별(分別)에 대(對)하여-)

  • Sung, Nack-Kie
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.99-105
    • /
    • 1969
  • The yield of cellulase derived from Trichoderma $(O_2-1)$ was remarkably varied with various concentration of ethanol and acetone in purification of the enzyme. In the purification with ethanol of ${\beta}-glucosidase$, the best result was obtained in the concentration of 60% and, of CMCase and of filter paper disintegrating enzyme 80%. And in the purification with acetone of ${\beta}-glucosidase$, filter paper disintegrating enzyme, and CMCase, in the concentration of 60%, 80%, and 90% respectively, was shown the best yield. The activities of crude Cellulase preparation could be seperated into few of fractions by column chromatography with Silica gel, Cellulose powder, and gauze. Most of CMCase, avicelase, and ${\beta}-glucosidase$ were eluted, but most of filter paper disintegrating enzyme and the rest of enzymes mentioned the above were absorbed, and were eluted with water. Therefore, it was considered that CMCase is different from filter paper disintegrating enzyme in properties. The relative activity of CMCase was different from that of avicelase in the peak of elusion part. And it was considered that filter paper disintegrating enzyme and cellulose powder saccharifying enzyme was seperated respectively as absorption part and non absorption part. The auther came to the conclusion that at least there were more than three sorts of cellulase in Trichoderma $(O_2-1)$ cellulase preparation.

  • PDF

Biological Activities of Coreopsis tinctoria Nutt. Flower Extracts (기생초 꽃 추출물의 생리활성)

  • Hwang, In-Guk;Kim, Hyun-Young;Shin, So-Lim;Lee, Cheol-Hee;Lee, Jun-Soo;Jang, Keum-Il;Jeong, Heon-Sang
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.857-863
    • /
    • 2010
  • This study was conducted to evaluate the antioxidant activity, Angiotensin I Converting Enzyme (ACE) inhibitory activity, ${\alpha}$-glucosidase inhibitory activity, nitrate synthesis inhibitory activity, and antiproliferation inhibitory effect on ethanol extract and its solvent fractions of $Coreopsis$ $tinctoria$ Nutt. Ethyl acetate fraction was the strongest at 1,1-diphenyl-2-picryl hydrazyl (DPPH) ($IC_{50}=0.100mg{\cdot}mL^{-1}$) and 2,2'-Azino-bis-(3-ethylbenozothiazoline-6-sulfonic acid) (ABTS) (15.785 mg AA $eq{\cdot}10mg^{-1}$) radical scavenging activity, ACE (40.96% at $1mg{\cdot}mL^{-1}$), and ${\alpha}$-glucosidase ($IC_{50}=0.125mg{\cdot}mL^{-1}$) inhibitory effect among the solvent fractions. Nitrate synthesis inhibitory activity of ethanol extract, chloroform fraction, and ethyl acetate fraction effectively inhibited NO formation in a dose-dependent manner without the cytotoxic effect. Ethanol extract and its solvent fractions inhibited growth of HCT-116 colon cancer cells in a dose-dependent manner. n-Hexane fraction showed the highest antiproliferation inhibitory effect of $0.041mg{\cdot}mL^{-1}$ among fractions.