• 제목/요약/키워드: Glucose Sensing

검색결과 69건 처리시간 0.027초

유체소자가 집적화된 면역검사용 휴대용 CMOS 바이오칩의 분석 (ANALYSIS OF FLUIDIC BEAD CUBE EMBEDDED PORTABLE CMOS SENSING SYSTEM FOR IMMUNO REACTION MONITORING)

  • 정용원;박세완;김진석;김현철;전국진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.755-758
    • /
    • 2005
  • This paper describes the novel immunoassay sensing system for a portable clinical diagnosis system. It consists of a bead cage reactor and a CMOS integrated biosensor. It showed the simple and easy antibody coating method on beads by flow-through avidin biotin complex technology in a microfluidic device. It showed just 90 nL sample consumption and good result for the application of alpha feto protein. The bead cage reactor has the role of the antibody coating, antigen binding and enzyme linking for the electrochemical sensing method. The CMOS biosensor consists of ISFET (ion selective field effect transistor) biosensor and temperature sensor for detecting pH that is the byproduct of enzyme reaction. The sensitivity is 8 $kHz/^{\circ}C$ in a temperature sensor and 33 mV/pH in a pH sensor. After filling the 15 um polystyrene beads in bead cage, antibody flowed and reacted to beads. Subsequently, the biotinylated antigen flowed and bound to the antibody and GOD (glucose oxidase)-avidin conjugate flowed and reacted to the biotin of the biotinylated antigen. After this reaction process, glucose solution flowed and reacted to the GOD on beads. The hydrogen was generated by glucose-GOD reaction. And it was detected by the pH sensor.

  • PDF

CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰 (Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제59권2호
    • /
    • pp.159-164
    • /
    • 2021
  • 부착형(attachable) 타입의 웨어러블 디바이스 적용을 위한 패브릭(fabric)이나 텍스처(textiles) 타입의 고성능 전극 소재 개발에 대한 필요성이 부각되고 있다. 본 연구에서는 유연 전극 소재로 탄소나노튜브 섬유(CNT fibers)를 응용하고자, CNT fibers의 전기화학적 특성과 이를 적용한 비효소적 글루코스 센싱 성능을 확인하였다. CNT fibers의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. CNT fibers 전극은 낮은 capacitive current와 산화-환원 화학종과 전극 계면 간의 효율적인 direct electron transfer에 의한 우수한 electrochemical activity 등 향상된 전기화학적 특성으로 인해 높은 감도와 넓은 선형 농도 범위, 그리고 낮은 검출 한계 등 우수한 센싱 특성을 보였다. 따라서, 본 연구는 CNT fibers 기반의 고성능 유연 전극 소재 개발을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.

Copy Paper as a Platform for Low-cost Sensitive Glucose Sensing

  • Ye Lin Kim;Young-Mog Kim;Junghwan Oh;Joong Ho Shin
    • 센서학회지
    • /
    • 제32권1호
    • /
    • pp.16-21
    • /
    • 2023
  • This study reports the potential of using commercial copy papers as substrates for simple sensitive glucose detection. Typical paper-based devices use filter papers as porous substrates that can contain reagents; however, this is the first study to report the use of copy papers for the purpose of enhancing enzymatic colorimetric detection. Glucose detection using glucose oxidase, horseradish peroxidase and potassium iodide was performed on a copy paper, cellulose-based filter paper, and polyethylene film. The results indicated that the copy paper exhibited a stronger coloration than the other substrates. Reagents required for detection were dried on the copy paper, and a 3D-printed holder was designed to provide an environment for consistent imaging, making it a convenient cost-effective option for point-of-care testing using a mobile phone camera. The simple paper-based glucose sensor exhibited a linear range of 0.1-20 mM, limit of quantification of 0.477 mM, and limit of detection of 0.143 mM.

Cu/Ni/Au 전극을 이용한 일회용 포도당 센서 개발 (Development of the disposable glucose sensor using Cu/Ni/Au electrode)

  • 이영태;이승로
    • 센서학회지
    • /
    • 제15권5호
    • /
    • pp.352-356
    • /
    • 2006
  • In this paper, we developed enzyme electrode of a new form to improve performance of disposable glucose sensor. We could fabricate electrode of Cu/Ni/Au structure which has very low electrical resistance (0.1 $\Omega$) by sticking copper film to plastic film with laminating method and electro-plated nickle and gold on it. The enzyme electrode was completed by immobilizing enzyme on the fabricated electrode. The fabricated glucose sensor has very quick sensing time as 3 seconds, and excellent reproducibility, fabrication yield as well.

Clinical In Vivo Bio Assay of Glucose in Human Skin by a Tattoo Film Carbon Nano Tube Sensor

  • Ly, Suw Young;Lee, Chang Hyun
    • 한국응용과학기술학회지
    • /
    • 제34권3호
    • /
    • pp.595-601
    • /
    • 2017
  • In vivo assay of glucose detection was described using a skin tattoo film electrode (STF), and the probe was made from carbon nano tube paste modification film paper. Here in the square-wave stripping anodic working range obtained of $20-100mgL^{-1}$ within an accumulation time of 0 seconds only in sea water electrolyte solutions of pH 7.0. The relative standard deviations of 50 mg glucose that were observed of 0.14 % (n=12), respectively, using optimum stripping accumulation of 30 sec, the low detection limit (S/N) was pegged at 15.8 mg/L. The developed results can be applied to the detect of in vivo skin sensing in real time. Which confirms the results are usable for in vitro or vivo diagnostic clinical analysis.

ISFET Glucose Sensor with Palladium Hydrogen Selective Membrane

  • Chung, Mi-Kyung;Kim, Seong-Wan;Lee, Sang-Sik;Park, Chong-Ook
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.90-95
    • /
    • 2012
  • This paper describes the development of a glucose biosensor based on ion sensitive field effect transistor(ISFET) with a palladium(Pd) modified ion sensing membrane. By adopting Pd as a hydrogen sensitive layer and integrating a screen-printed reference electrode, the sensitivity and stability were considerably improved due to the high permeability and selectivity of the Pd hydrogen selective membrane. This paper suggests a new approach for realizing portable and highly sensitive glucose sensors for diagnosing and treating diabetes mellitus.

Software Sensing for Glucose Concentration in Industrial Antibiotic Fed-batch Culture Using Fuzzy Neural Network

  • Imanishi, Toshiaki;Hanai, Taizo;Aoyagi, Ichiro;Uemura, Jun;Araki, Katsuhiro;Yoshimoto, Hiroshi;Harima, Takeshi;Honda , Hiroyuki;Kobayashi, Takeshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권5호
    • /
    • pp.275-280
    • /
    • 2002
  • In order to control glucose concentration during fed-batch culture for antibiotic production, we applied so called “software sensor” which estimates unmeasured variable of interest from measured process variables using software. All data for analysis were collected from industrial scale cultures in a pharmaceutical company. First, we constructed an estimation model for glucose feed rate to keep glucose concentration at target value. In actual fed-batch culture, glucose concentration was kept at relatively high and measured once a day, and the glucose feed rate until the next measurement time was determined by an expert worker based on the actual consumption rate. Fuzzy neural network (FNN) was applied to construct the estimation model. From the simulation results using this model, the average error for glucose concentration was 0.88 g/L. The FNN model was also applied for a special culture to keep glucose concentration at low level. Selecting the optimal input variables, it was possible to simulate the culture with a low glucose concentration from the data sets of relatively high glucose concentration. Next, a simulation model to estimate time course of glucose concentration during one day was constructed using the on-line measurable process variables, since glucose concentration was only measured off-line once a day. Here, the recursive fuzzy neural network (RFNN) was applied for the simulation model. As the result of the simulation, average error of RFNN model was 0.91 g/L and this model was found to be useful to supervise the fed-batch culture.

백금전극과 감광성 고분자를 이용한 ISFET 포도당 및 자당센서의 감지성능 개선 (The Improvement of Sensing Performance of ISFET Glucose and Sucrose Sensors by Using Platinum Electrode and Photo-crosslinkable Polymers)

  • 조병욱;장원덕;김창수;박이순;손병기
    • 센서학회지
    • /
    • 제4권4호
    • /
    • pp.23-28
    • /
    • 1995
  • 백금작업전극과 광가교화된 효소고정화막을 가진 ISFET 포도당 및 자당센서가 제조되었다. 효소반응의 부산물인 과산화수소수($H_{2}O_{2}$)는 백금전극표면에서 분해되어 센서의 감지특성을 개선시키고, 광가교화 고분자(PVA-SbQ)가 효소고정화막으로 이용되어 센서의 응답시간을 단축하였다. 그리고 백금전극의 면적변화에 따라 센서의 응답크기는 증가하였다. 센서의 응답시간은 $3{\sim}5$분이었으며, $30{\sim}300mg/dl$의 포도당 및 자당농도에서 센서의 선형적인 응답을 보였다.

  • PDF

글루타알데하이드에 의해 결합된 효소촉매를 이용한 글루코스 센서의 성능향상 (Performance Improvement of Glucose Sensor Adopting Enzymatic Catalyst bonded by Glutaraldehyde)

  • 안연주;정용진;이규빈;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제27권4호
    • /
    • pp.378-385
    • /
    • 2016
  • In this study, we synthesized a biocatalyst consisting of glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT) with addition of glutaraldehyde (GA)(GA/[GOx/PEI/CNT])for fabrication of glucose sensor. Main bonding of the GA/[GOx/PEI/CNT] catalyst was formed by crosslinking of functional end groups between GOx/PEI and GA. Catalytic activity of GA/[GOx/PEI/CNT] was quantified by UV-Vis and electrochemical measurements. As a result of that, high immobilization ratio of 199% than other catalyst (with only physical adsorption) and large sensitivity value of $13.4{\mu}A/cm^2/mM$ was gained. With estimation of the biosensor stability, it was found that the GA/[GOx/PEI/CNT] kept about 88% of its initial activity even after three weeks. It shows GA minimized the loss of GOx and improved sensing ability and stability compared with that using other biocatalysts.

사진식각기술을 이용한 FET형 반도체 요소 및 포도당센서의 제조와 그 특성 (Fabrication and Characteristics of FET Type Semiconductor Urea and Glucose Sensor Employing Photolithography Techniques)

  • 조병욱;김창수;서화일;손병기
    • 센서학회지
    • /
    • 제1권2호
    • /
    • pp.101-106
    • /
    • 1992
  • 반도체 pH 센서인 pH-ISFET와 효소 고정화막을 기술적으로 결합한 FET형 반도체 요소 및 포도당센서를 제조하고 그 동작특성을 조사하였다. 사진식각기술을 이용하여 pH-ISFET의 수소이온 감지막 위에 urease와 glucose oxidase를 감광성 고분자 물질인 PVA(polyvinyl alcohol)-SbQ(stilbazolium group)로 고정화(immobilization)시켰다. 제조된 요소센서와 포도당센서는 각각 $0.5{\sim}50{\;}mg/dl$ 범위의 요소농도와 $10{\sim}1000{\;}mg/dl$의 포도당 농도를 정량 할 수 있었다.

  • PDF