• 제목/요약/키워드: Global water challenges

검색결과 37건 처리시간 0.037초

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • 제13권3호
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.

Factors Affecting of Environmental Consciousness on Green Purchase Intention: An Empirical Study of Generation Z in Vietnam

  • NGUYEN, Trong Luan;HUYNH, Minh Khang;HO, Nguyet Nuong;LE, Tran Gia Bao;DOAN, Nguyen Duy Hau
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권1호
    • /
    • pp.333-343
    • /
    • 2022
  • Humans are facing many environmental challenges. Climate change, water pollution, global warming, and hazardous waste disposal are all issues that many countries throughout the world are dealing with. People's psychology and consumer behavior are significantly affected by these challenges, particularly generation Z, which is immediately affected by environmental changes. Young people have a strong sense of curiosity and have access to readily updated knowledge. Today's youth, in particular, live a civilized and responsible lifestyle. As a result, people recognize the significance of their own consumption behavior in affecting environmental change and are increasingly replacing them with green, ecologically friendly products as a fantastic method to mitigate their harmful consequences. In this research, there are four factors related to the young generation and environmental awareness that affect green consumption intention: perceived environmental responsibility, green knowledge, green attitude, and green product value. The goal of this study is to look into how detrimental environmental changes affect Generation Z's green consumption habits. This study used primary data from over 1000 people in the age group, which was processed using the AMOS 20 software. All the characteristics described above had an impact on Generation Z's green consumption intentions, according to the findings.

Effect of Wastewater from the in-water Cleaning Process of Ship Hull on Marine Organisms - A Review

  • Jae-Sung Rhee;Seong Hee Mun;Jee-Hyun Jung
    • 한국해양생명과학회지
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Over the past decade, there has been global expansion in the advancement of underwater cleaning technology for ship hulls. This methodology ensures both diver safety and operational efficiency. However, recent attention has been drawn to the harmful effects of ship hull-cleaning wastewater on marine animals. It is anticipated that this wastewater may have various impacts on a wide range of organisms, potentially leading to populationand ecosystem-relevant alterations. This concern is especially significant when the wastewater affects functionally important species, such as aquaculture animals and habitat-forming species living in coastal regions, where underwater cleaning platforms are commonly established. Despite this, information on the ecotoxicological effects of this wastewater remains limited. In this mini review, we discuss the adverse effects of wastewater from in-water cleaning processes, as well as the current challenges and limitations in regulating and mitigating its potential toxicity. Overall, recent findings underscore the detrimental effects posed by sublethal levels of wastewater to the health status of aquatic animals under both acute and chronic exposure.

COVID-19 Vaccine: Critical Questions with Complicated Answers

  • Haidere, Mohammad Faisal;Ratan, Zubair Ahmed;Nowroz, Senjuti;Zaman, Sojib Bin;Jung, You-Jung;Hosseinzadeh, Hassan;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 2021
  • COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARS-CoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.

Global Rice Production, Consumption and Trade: Trends and Future Directions

  • Bhandari, Humnath
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2019년도 추계학술대회
    • /
    • pp.5-5
    • /
    • 2019
  • The objectives of this paper are (i) to analyze past trends and future directions of rice production, consumption and trade across the world and (ii) to discuss emerging challenges and future directions in the global rice industry. Rice is a staple food of over half of the world's 7.7 billion people. It is an important economic, social, political, and cultural commodity in most Asian countries. Rice is the $1^{st}$ most widely consumed, $2^{nd}$ largely produced, and $3^{rd}$ most widely grown food crop in the world. It was cultivated by 144 million farms in over 100 countries with harvested area of over 163 million ha producing about 745 million tons paddy in 2018. About 90% of the total rice is produced in Asia. China and India, the biggest rice producers, account for over half of the world's rice production. Between 1960 and 2018, world rice production increased over threefold from 221 to 745 million tons (2.1% per year) due to area expansion from 120 to 163 million ha (0.5% per year) and paddy yield increase from 1.8 to 4.6 t/ha (1.6% per year). The Green Revolution led massive increase in rice production prevented famines, provided food for millions of people, reduced poverty and hunger, and improved livelihoods of millions of Asians. The future increase in rice production must come from yield increase as the scope for area expansion is limited. Rice is the most widely consumed food crop. The world's average per capita milled rice consumption is 64 kilograms providing 19% of daily calories. Asia accounted for 84% of global consumption followed by Africa (7%), South America (3%), and the Middle East (2%). Asia's per capita rice consumption is 100 kilograms per year providing 28% of daily calories. The global and Asian per capita consumption increased from the 1960s to the 1990s but stable afterward. The per capita rice consumption is expected to decline in Asia but increase outside Asia especially in Africa in the future. The total milled rice consumption was about 490 million tons in 2018 and projected to reach 550 million tons by 2030 and 590 million tons by 2040. Rice is thinly traded in international market because it is a highly protected commodity. Only about 9% of the total production is traded in global rice market. However, the volume of global rice trade has increased over six-fold from 7.5 to 46.5 million tons between the 1960s and 2018. A relatively small number of exporting countries interact with a large number of importing countries. The top five rice exporting countries are India, Thailand, Vietnam, Pakistan, and China accounting for 74% of the global rice export. The top five rice importing countries are China, Philippines, Nigeria, European Union and Saudi Arabia accounting for 26% of the global rice import. Within rice varieties, Japonica rice accounts for the highest share of the global rice trade (about 12%) followed by Basmati rice (about 10%). The high concentration of exports to a few countries makes international rice market vulnerable to supply disruptions in exporting countries, leading to higher world prices of rice. The export price of Thai 5% broken rice increased from 198 US$/ton in 2000 to 421 US$/ton in 2018. The volumes of trade and rice prices in the global market are expected to increase in the future. The major future challenges of the rice industry are increasing demand due to population growth, rising demand in Africa, economic growth and diet diversification, competition for natural resources (land and water), labor scarcity, climate change and natural hazards, poverty and inequality, hunger and malnutrition, urbanization, low income in rice farming, yield saturation, aging of farmers, feminization of agriculture, health and environmental concerns, improving value chains, and shifting donor priorities away from agriculture. At the same time, new opportunities are available due to access to new technologies, increased investment by the private sector, and increased global partnership. More investment in rice research and development is needed to develop and disseminate innovative technologies and practices to overcome problems and ensure food and nutrition security of the future population.

  • PDF

Researched and Analyzed Variables for Pollution Waters around the "Kosova B" Thermal Power Plant

  • Musliu, Adem;Musliu, Arber;Baftiu, Naim
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.109-116
    • /
    • 2022
  • The energy corporation of Kosovo continuously monitors and analyzes the impact of its own activities on the environment. Regarding the environmental situation, energy corporation of Kosovo- ECK regularly informs and reports objectively to the competent state institutions, local municipal institutions and interested parties. ECK, through numerous contacts with the competent authorities, firstly with different ministers, harmonizes the positions regarding environmental issues in the direction of achieving certain environmental standards or legal requirements in order to gradually be in accordance with them, based on the real possibilities, especially the financial ones. From this point of view, the environmental issue is very sensitive, quite complex and represents one of the biggest challenges of society currently and in the future. The researched variables show a continuous increase in the need for electricity production in Kosovo and this increase in production conditions a wide range of environmental impacts both at the local, regional and global levels. The aim of the work is to reduce the emission of pollutants through the main variables without inhibiting the economic development of the country, i.e. to bring the pollution as a result of the activities of the ECK operation into compliance with the permitted environmental norms. As a result of ECK's operational activities, the following follows: Air pollution mainly as a result of emissions from TCs in the air, transport, etc. Water pollution - as a result of technological water discharges, Land degradation - as a result of surface mining activities of the entire mining area. The purpose of the paper is to research and analyze the main water variables in the area of the Kosova B power plant, which is to determine the degree of their pollution from the activities of the power plants, as well as to assess the real state of surface water quality and control the degree of pollution of these waters. Methodology of the work: The analyzes of the water samples were done in the company Institute "INKOS" JSC by simultaneous methods using different reagents.

Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

  • Cheng, Bo;Kim, Young-Jin;Chou, Peter
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.16-25
    • /
    • 2016
  • In severe loss of coolant accidents (LOCA), similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconiumalloy fuel claddingmaterials are rapidlyheateddue to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF) design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI) is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in $1,200-1,500^{\circ}C$ steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstratedcorrosionresistance.Asthese composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Moalloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are discussed in this document. In addition to assisting plants in meeting Light Water Reactor (LWR) challenges, accident-tolerant Mo-based cladding technologies are expected to be applicable for use in high-temperature helium and molten salt reactor designs, as well as nonnuclear high temperature applications.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • 한국재료학회지
    • /
    • 제33권5호
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

Environmental Challenges of Animal Agriculture and the Role and Task of Animal Nutrition in Environmental Protection - Review -

  • Chen, Daiwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권3호
    • /
    • pp.423-431
    • /
    • 2001
  • Animals are one of the important memberships of the food chain. The low-efficiency rule of nutrient transfer from one member to the next in the food chain determines the low efficiency of animal agriculture for human food. On the average, about 20% feed proteins and 15% feed energy can be converted into edible nutrients for humans. The rest proportion of feed nutrients is exposed to the environment. Environmental pollution, therefore, is inevitable as animal agriculture grows intensively and extensively. The over-loading of the environment by nutrients such as nitrogen, phosphorus from animal manure results in soil and water spoilage. The emission of gases like $CH_2$, $CO_2$, $SO_2$, NO, $NO_2$ by animals are one of the contributors for the acidification of the environment and global warming. The inefficient utilization of natural resources and the probable unsafety of animal products to human health are also a critical environmental issue. Improving the conversion efficiency of nutrients in the food chain is the fundamental strategy for solving environmental issues. Specifically in animal agriculture, the strategy includes the improvements of animal genotypes, nutritional and feeding management, animal health, housing systems and waste disposal programs. Animal nutrition science plays a unique and irreplaceable role in the control of nutrient input and output in either products or wastes. Several nutritional methods are proved to be effective in alleviating environmental pollution. A lot of nutritional issues, however, remain to be further researched for the science of animal nutrition to be a strong helper for sustainability of animal agriculture.

온실가스배출 감소와 연료절감을 위한 최적 운용절차 방안에 관한 연구 (A Study of Optimized Operation for CO2 Emission and Aircraft Fuel Reduced Operation Procedures)

  • 황정현;이태광;황사식
    • 한국항공운항학회지
    • /
    • 제21권4호
    • /
    • pp.62-70
    • /
    • 2013
  • As the aviation industry looks to the future, fuel saving and $CO_2$ emission reduction play a dominant role in meeting the business challenges presented by global financial uncertainty. The IATA and International Government effort to save fuels, and then save 4 billion gallons of fuel burned, while reducing $CO_2$ emissions by 34 million tons. The various reduction methods adapted airlines and airports. We focused on optimized flight operation procedures for saving fuel and reduction emission cases. IATA and Canada government research reports focused on four methods that Engine Core Washing, Portable Water Management, Single Engine Taxi, APU limit operation. Apply to domestic airlines fuel data, Engine Core washing was saving more than Twenty-four thousand tons $CO_2$ emissions.