Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.178

COVID-19 Vaccine: Critical Questions with Complicated Answers  

Haidere, Mohammad Faisal (Department of Soil, Water and Environment, University of Dhaka)
Ratan, Zubair Ahmed (School of Health & Society, University of Wollongong)
Nowroz, Senjuti (Department of Chemistry, University of Dhaka)
Zaman, Sojib Bin (Department of Medicine, School of Clinical Sciences, Monash University)
Jung, You-Jung (Biological Resources Utilization Department, National Institute of Biological Resources)
Hosseinzadeh, Hassan (School of Health & Society, University of Wollongong)
Cho, Jae Youl (Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University)
Publication Information
Biomolecules & Therapeutics / v.29, no.1, 2021 , pp. 1-10 More about this Journal
Abstract
COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARS-CoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.
Keywords
COVID-19; Vaccine; Vaccine backfires; Vaccine safety;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. W., Canchola, J. G., Brandt, C. D., Pyles, G., Chanock, R. M., Jensen, K. and Parrott, R. H. (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 89, 422-434.   DOI
2 Kimmel, S. R. (2002) Vaccine adverse events: separating myth from reality. Am. Fam. Physician 66, 2113-2120.
3 Korber, B., Fischer, W., Gnanakaran, S. G., Yoon, H., Theiler, J., Abfalterer, W., Foley, B., Giorgi, E. E., Bhattacharya, T., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I.; on behalf of the Sheffield COVID-19 Genomics Group, LaBranche, C. C. and Montefiori, D. C. (2020) Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv doi: 10.1016/j.cell.2020.06.043.   DOI
4 Koyama, T., Weeraratne, D., Snowdon, J. L. and Parida, L. (2020) Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens 9, 324.   DOI
5 Le Houezec, D. (2014) Evolution of multiple sclerosis in France since the beginning of hepatitis B vaccination. Immunol. Res. 60, 219-225.   DOI
6 Le, T. T., Cramer, J. P., Chen, R. and Mayhew, S. (2020) Evolution of the COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 667-668.   DOI
7 Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., Wu, T., Cheung, K. W., Chan, K. H., Alvarez, X., Qin, C., Lackner, A., Perlman, S., Yuen, K. Y. and Chen, Z. (2019) Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 4, e123158.   DOI
8 Xiao, A. T., Gao, C. and Zhang, S. (2020) Profile of specific antibodies to SARS-CoV-2: the first report. J. Infect. 81, 147-178.   DOI
9 Yazdanpanah, F., Hamblin, M. R. and Rezaei, N. (2020) The immune system and COVID-19: friend or foe? Life Sci. 256, 117900.   DOI
10 Zepp, F. (2010) Principles of vaccine design-lessons from nature. Vaccine 28, C14-C24.   DOI
11 Zhang, C., Zhao, Y. X., Zhang, Y. H., Zhu, L., Deng, B. P., Zhou, Z. L., Li, S. Y., Lu, X. T., Song, L. L., Lei, X. M., Tang, W. B., Wang, N., Pan, C. M., Song, H. D., Liu, C. X., Dong, B., Zhang, Y. and Cao, Y. (2010) Angiotensin-converting enzyme 2 attenuates atherosclerotic lesions by targeting vascular cells. Proc. Natil. Acad. Sci. U.S.A. 107, 15886-15891.   DOI
12 Zhou, Z., Ren, L., Zhang, L., Zhong, J., Xiao, Y., Jia, Z., Guo, L., Yang, J., Wang, C., Jiang, S., Yang, D., Zhang, G., Li, H., Chen, F., Xu, Y., Chen, M., Gao, Z., Yang, J., Dong, J., Liu, B., Zhang, X., Wang, W., He, K., Jin, Q., Li, M. and Wang, J. (2020) Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host Microbe 27, 883-890.e2.   DOI
13 Schonberger, L. B., Bregman, D. J., Sullivan-Bolyai, J. Z., Keenlyside, R. A., Ziegler, D. W., Retailliau, H. F., Eddins, D. L. and Bryan, J. A. (1979) Guillain-Barre syndrome following vaccination in the national influenza immunization program, United States, 1976-1977. Am. J. Epidemiol. 110, 105-123.   DOI
14 Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. and Siddique, R. (2020) COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91-98.   DOI
15 Corman, V. M., Muth, D., Niemeyer, D. and Drosten, C. (2018). Hosts and sources of endemic human coronaviruses. In Advances in Virus Research, Vol. 100, pp. 163-188. Elsevier.
16 Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. and Garry, R. F. (2020) The proximal origin of SARS-CoV-2. Nat. Med. 26, 450-452.   DOI
17 Callow, K., Parry, H., Sergeant, M. and Tyrrell, D. (1990) The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 105, 435-446.   DOI
18 Clem, A. S. (2011) Fundamentals of vaccine immunology. J. Glob. Infect. Dis. 3, 73-78.   DOI
19 Cui, W., Fan, Y., Wu, W., Zhang, F., Wang, J. y. and Ni, A. p. (2003) Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clin. Infect. Dis. 37, 857-859.   DOI
20 Du, Z., Zhu, F., Guo, F., Yang, B. and Wang, T. (2020) Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J. Med. Virol. doi: 10.1002/jmv.25820 [Online ahead of print].   DOI
21 Duffy, J., Weintraub, E., Vellozzi, C. and DeStefano, F. (2014) Narcolepsy and influenza A (H1N1) pandemic 2009 vaccination in the United States. Neurology 83, 1823-1830.   DOI
22 Ewer, K., Sebastian, S., Spencer, A. J., Gilbert, S., Hill, A. V. and Lambe, T. (2017) Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum. Vaccin. Immunother. 13, 3020-3032.   DOI
23 Partinen, M., Saarenpaa-Heikkila, O., Ilveskoski, I., Hublin, C., Linna, M., Olsen, P., Nokelainen, P., Alen, R., Wallden, T., Espo, M., Rusanen, H., Olme, J., Satila, H., Arikka, H., Kaipainen, P., Julkunen, I. and Kirjavainen, T. (2012) Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS ONE 7, e33723.   DOI
24 Long, Q. X., Tang, X. J., Shi, Q. L., Li, Q., Deng, H. J., Yuan, J., Hu, J. L., Xu, W., Zhang, Y., Lv, F. J., Su, K., Zhang, F., Gong, J., Wu, B., Liu, X. M., Li, J. J., Qiu, J. F., Chen, J. and Huang, A. L. (2020b) Clinical and immunological assessment of asymptomatic SARSCoV-2 infections. Nat. Med. 26, 1200-1204.   DOI
25 Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., Liao, P., Qiu, J. F., Lin, Y., Cai, X. F., Wang, D. Q., Hu, Y., Ren, J. H., Tang, N., Xu, Y. Y., Yu, L. H., Mo, Z., Gong, F., Zhang, X. L., Tian, W. G., Hu, L., Zhang, X. X., Xiang, J. L., Du, H. X., Liu, H. W., Lang, C. H., Luo, X. H., Wu, S. B., Cui, X. P., Zhou, Z., Zhu, M. M., Wang, J., Xue, C. J., Li, X. F., Wang, L., Li, Z. J., Wang, K., Niu, C. C., Yang, Q. J., Tang, X. J., Zhang, Y., Liu, X. M., Li, J. J., Zhang, D. C., Zhang, F., Liu, P., Yuan, J., Li, Q., Hu, J. L., Chen, J. and Huang, A. L. (2020a) Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 26, 845-848.   DOI
26 Morris, S. J., Sebastian, S., Spencer, A. J. and Gilbert, S. C. (2016) Simian adenoviruses as vaccine vectors. Fut. Virol. 11, 649-659.   DOI
27 Moser, M. and Leo, O. (2010) Key concepts in immunology. Vaccine 28, C2-C13.   DOI
28 Mullard, A. (2020) COVID-19 vaccine development pipeline gears up. Lancet 395, 1751-1752.   DOI
29 Naismith, R. T. and Cross, A. H. (2004) Does the hepatitis B vaccine cause multiple sclerosis? Neurology 63, 772-773.   DOI
30 Offit, P. A. (2005) The Cutter incident, 50 years later. N. Engl. J. Med. 352, 1411-1412.   DOI
31 Gopinathan, U., Peacocke, E., Gouglas, D., Ottersen, T. and Rottingen, J. A. (2020) R&D for emerging infectious diseases of epidemic potential: sharing risks and benefits through a new coalition. In Infectious Diseases in the New Millennium, pp. 137-165. Springer.
32 Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., BelijRammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., Minassian, A. M., Pollock, K. M., Ramasamy, M., Robinson, H., Snape, M., Tarrant, R., Voysey, M., Green, C., Douglas, A. D., Hill, A. V. S., Lambe, T., Gilbert, S. C. and Pollard, A. J.; Oxford COVID Vaccine Trial Group (2020) Safety and immunogenicity of the ChAdOx1 nCoV19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467-478.   DOI
33 Gaebler, C. and Nussenzweig, M. C. (2020) All eyes on a hurdle race for a SARS-CoV-2 vaccine. Nature 586, 501-502.   DOI
34 Gerdil, C. (2003) The annual production cycle for influenza vaccine. Vaccine 21, 1776-1779.   DOI
35 Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y. and Yan, Y. (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil. Med. Res. 7, 11.   DOI
36 Hotez, P. J., Corry, D. B. and Bottazzi, M. E. (2020) COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol. 20, 347-348.   DOI
37 Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., Aghamohammadi, N., Zhang, W. and Haque, U. (2020) The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned? Int. J. Epidemiol. 49, 717-726.   DOI
38 Phan, T. (2020) Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol. 81, 104260.   DOI
39 Ratan, Z. A., Hosseinzadeh, H., Runa, N. J., Uddin, B. M. M., Haidere, M. F., Sarker, S. K. and Zaman, S. B. (2020) Novel Coronavirus: a new challenge for medical scientist? Bangladesh J. Infect. Dis. 7, S58-S60.
40 Hodgson, S. H., Mansatta, K., Mallett, G., Harris, V., Emary, K. R. and Pollard, A. J. (2020) What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30773-8 [Online ahead of print].   DOI
41 Weingartl, H., Czub, M., Czub, S., Neufeld, J., Marszal, P., Gren, J., Smith, G., Jones, S., Proulx, R, Deschambault, Y., Grudeski, E., Andonov, A., He, R., Li, Y., Copps, J., Grolla, A., Dick, D., Berry, J., Ganske, S., Manning, L. and Cao, J. (2004) Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J. Virol. 78, 12672-12676.   DOI
42 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F. and Tan, W.; China Novel Coronavirus Investigating and Research Team (2020) A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727-733.   DOI
43 Houser, K. V., Broadbent, A. J., Gretebeck, L., Vogel, L., Lamirande, E. W., Sutton, T., Bock, K. W., Minai, M., Orandle, M., Moore, I. N. and Subbarao, K. (2017) Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog. 13, e1006565.   DOI
44 Huisman, W., Martina, B., Rimmelzwaan, G., Gruters, R. and Osterhaus, A. (2009) Vaccine-induced enhancement of viral infections. Vaccine 27, 505-512.   DOI
45 Institute of Medicine (US) Immunization Safety Review Committe (2002) Immunization Safety Review: SV40 Contamination of Polio Vaccine and Cancer (K. Stratton, D. A. Almario and M. C. McCormick Eds). National Academies Press (US), Washington DC.
46 Tetro, J. A. (2020) Is COVID-19 receiving ADE from other coronaviruses? Microbes Inf. 22, 72-73.   DOI
47 van Riel, D. and de Wit, E. (2020) Next-generation vaccine platforms for COVID-19. Nat. Mater. 19, 810-812.   DOI
48 Vickers, C., Hales, P., Kaushik, V., Dick, L., Gavin, J., Tang, J., Godbout, K., Parsons, T., Baronas, E., Hsieh, F., Acton, S., Patane, M., Nichols, A. and Tummino, P. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277, 14838-14843.   DOI
49 Wilder-Smith, A. (2020) Dengue vaccine development: status and future. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63, 40-44.   DOI
50 World Health Organization (2020) Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update. In Coronavirus Disease (COVID-19) Situation Reports, Vol. 2020. World Health Organization: WHO.
51 Ascherio, A., Zhang, S. M., Hernan, M. A., Olek, M. J., Coplan, P. M., Brodovicz, K. and Walker, A. M. (2001) Hepatitis B vaccination and the risk of multiple sclerosis. N. Engl. J. Med. 344, 327-332.   DOI
52 Robbiani, D. F., Gaebler, C., Muecksch, F., Lorenzi, J. C. C., Wang, Z., Cho, A., Agudelo, M., Barnes, C. O., Gazumyan, A., Finkin, S., Hagglof, T., Oliveira, T. Y., Viant, C., Hurley, A., Hoffmann, H. H., Millard, K. G., Kost, R. G., Cipolla, M., Gordon, K., Bianchini, F., Chen, S. T., Ramos, V., Patel, R., Dizon, J., Shimeliovich, I., Mendoza, P., Hartweger, H., Nogueira, L., Pack, M., Horowitz, J., Schmidt, F., Weisblum, Y., Michailidis, E., Ashbrook, A. W., Waltari, E., Pak, J. E., Huey-Tubman, K. E., Koranda, N., Hoffman, P. R., West, A. P., Jr., Rice, C. M., Hatziioannou, T., Bjorkman, P. J., Bieniasz, P. D., Caskey, M. and Nussenzweig, M. C. (2020) Convergent antibody responses to SARS-CoV-2 infection in convalescent individuals. bioRxiv doi: 10.1101/2020.05.13.092619.   DOI
53 Santos, R. A., Ferreira, A. J. and Simoes E Silva, A. C. (2008) Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis. Exp. Physiol. 93, 519-527.   DOI
54 Andrews, S. M. and Rowland-Jones, S. (2017) Recent advances in understanding HIV evolution. F1000Res 6, 597.   DOI
55 Bernstein, K. E., Khan, Z., Giani, J. F., Cao, D. Y., Bernstein, E. A. and Shen, X. Z. (2018) Angiotensin-converting enzyme in innate and adaptive immunity. Nat. Rev. Nephrol. 14, 325-336.   DOI
56 Brisse, M., Vrba, S. M., Kirk, N., Liang, Y. and Ly, H. (2020) Emerging concepts and technologies in vaccine development. Front. Immunol. 11, 583077.   DOI
57 Adams, E. R., Ainsworth, M., Anand, R., Andersson, M. I., Auckland, K., Baillie, J. K., Barnes, E., Beer, S., Bell, J. I. and Berry, T. (2020) Antibody testing for COVID-19: a report from the national COVID scientific advisory panel. Wellcome Open Res. 5, 139.   DOI
58 Jouan, Y., Guillon, A., Gonzalez, L., Perez, Y., Ehrmann, S., Ferreira, M., Daix, T., Jeannet, R., Francois, B., Dequin, P. F., SiTahar, M., Baranek, T. and Paget, C. (2020) Functional alteration of innate T cells in critically ill Covid-19 patients. medRxiv doi: 10.1101/2020.05.03.20089300 [Online ahead of print].   DOI
59 Iskander, J., Haber, P. and Murphy, T. (2004) Suspension of rotavirus vaccine after reports of intussusception-United States, 1999. MMWR Morb. Mortal. Wkly Rep. 53, 786-789.
60 Jamilloux, Y., Henry, T., Belot, A., Viel, S., Fauter, M., El Jammal, T., Walzer, T., Francois, B. and Seve, P. (2020) Should we stimulate or suppress immune responses in COVID-19? Cytokine and anticytokine interventions. Autoimmun. Rev. 102567.
61 Kabbani, N. and Olds, J. L. (2020) Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol. Pharmacol. 97, 351-353.   DOI
62 Keshavarzi Arshadi, A., Webb, J., Salem, M., Cruz, E., Calad-Thomson, S., Ghadirian, N., Collins, J., Diez-Cecilia, E., Kelly, B., Goodarzi, H. and Yuan, J. S. (2020) Artificial intelligence for COVID-19 drug discovery and vaccine development. Front. Artif. Intell. 3, 65.   DOI
63 Kim, D., Lee, J. Y., Yang, J. S., Kim, J. W., Kim, V. N. and Chang, H. (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181, 914-921.e10.   DOI
64 Khailany, R. A., Safdar, M. and Ozaslan, M. (2020) Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19, 100682.   DOI