DOI QR코드

DOI QR Code

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Lee, Wooram (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Park, Jaebeom (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Choi, Yongju (Department of Civil and Environmental Engineering, Seoul National University)
  • Received : 2021.11.16
  • Accepted : 2022.05.10
  • Published : 2022.05.25

Abstract

Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.

Keywords

Acknowledgement

This research was supported by NRF (National Research Foundation of Korea) Grant funded by the Korean Government (MIST) (2021R1A2C2010306). The Institute of Engineering Research at Seoul National University provided research facilities for this work. This work is supported by Knowledge-based environmental service Program funded by Ministry of Environment.

References

  1. Abd Aziz, M.H., Othman, M.H.D., Alias, N.H., Nakayama, T., Shingaya, Y., Hashim, N.A., Kurniawan, T.A., Matsuura, T., Rahmana, M.A. and Jaafar, J. (2020), "Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation", J. Membr. Sci., 607, 118137. https://doi.org/10.1016/j.memsci.2020.118137.
  2. Ahmad, N.A., Leo, C.P. and Ahmad, A.L. (2013), "Synthesis of superhydrophobic alumina membrane: Effects of sol-gel coating, steam impingement and water treatment", Appl. Surf. Sci., 284, 556-564. https://doi.org/10.1016/j.apsusc.2013.07.133.
  3. Amaral, M.C., Magalhaes, N.C., Moravia, W.G. and Ferreira, C.D. (2016), "Ammonia recovery from landfill leachate using hydrophobic membrane contactors", Water Sci. Technol., 74(9), 2177-2184. https://doi.org/10.2166/wst.2016.375.
  4. Ang, W.L., Nordin, D., Mohammad, A.W., Benamor, A. and Hilal, N. (2017), "Effect of membrane performance including fouling on cost optimization in brackish water desalination process", Chem. Eng. Res. Des., 117, 401-413. https://doi.org/10.2166/wst.2016.375.
  5. Ashrafizadeh, S.N. and Khorasani, Z. (2010), "Ammonia removal from aqueous solutions using hollow-fiber membrane contactors", Chem. Eng. Res. Des., 162(1), 242-249. https://doi.org/10.1016/j.cej.2010.05.036.
  6. Baker, R.W. (2000), Membrane Technology and Applications, McGraw-Hill, New York, U.S.A.
  7. Bazhenov, S.D., Bildyukevich, A.V. and Volkov, A.V. (2018), "Gas-liquid hollow fiber membrane contactors for different applications", Fibers, 6(4), 76. https://doi.org/10.3390/fib6040076.
  8. Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Muller, C., Bonsch, M., Humpenoder, F., Biewald, A. and Stevanovic, M. (2014), "Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution", Nat. Commun., 5(1), 1-7. https://doi.org/10.1038/ncomms4858.
  9. Boehler, M. A., Heisele, A., Seyfried, A., Gromping, M. and Siegrist, H. (2015), "(NH4)2 SO4 recovery from liquid side streams", Environ. Sci. Pollut. Res., 22(10), 7295-7305. https://doi.org/10.1007/s11356-014-3392-8.
  10. Brennan, B., Briciu-Burghina, C., Hickey, S., Abadie, T., al Ma Awali, S.M., Delaure, Y., Durkan, J., Holland, L., Quilty, B., Tajparast, M., Pulit, C., Fitzsimons, L., Nolan, K., Regan, F. and Lawler, J. (2020), "Pilot scale study: First demonstration of hydrophobic membranes for the removal of ammonia molecules from rendering condensate wastewater", Int. J. Mol. Sci., 21(11), 3914. https://doi.org/10.3390/ijms21113914.
  11. Brennan, B., Lawler, J. and Regan, F. (2021), "Recovery of viable ammonia-nitrogen products from agricultural slaughterhouse wastewater by membrane contactors: a review", Environ. Sci. Water Res. Technol., 7(2), 259-273. https://doi.org/10.1039/D0EW00960A.
  12. Burton, F.L. and Tchobanoglous, G. (2018), Wastewater Engineering: Treatment, Disposal, and Reuse, McGraw-Hill, New York, U.S.A.
  13. Chakradhar, R.P.S., Kumar, V.D., Rao, J.L. and Basu, B.J. (2011), "Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour", Appl. Surf. Sci., 257(20), 8569-8575. https://doi.org/10.1016/j.apsusc.2011.05.016.
  14. Chang, H., Li, T., Liu, B., Chen, C., He, Q. and Crittenden, J.C. (2019), "Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water", Environ. Int., 130, 104869. https://doi.org/10.1016/j.envint.2019.05.063.
  15. Chen, C., Han, M., Yao, J., Zhi, Y., Liu, Y., Zhang, C. and Han, L. (2021), "Donnan dialysis-osmotic distillation (DD-OD) hybrid process for selective ammonium recovery driven by waste alkali", Environ. Sci. Technol., 55(10), 7015-7024. https://doi.org/10.1021/acs.est.0c08772.
  16. Chen, X.Y., Kaliaguine, S. and Rodrigue, D. (2018), "Correlation between performances of hollow fibers and flat membranes for gas separation", Sep. Purif. Rev., 47(1), 66-87. https://doi.org/10.1080/15422119.2017.1324490.
  17. Chen, X.Y., Vinh-Thang, H., Ramirez, A.A., Rodrigue, D. and Kaliaguine, S. (2015), "Membrane gas separation technologies for biogas upgrading", Rsc Adv., 5(31), 24399-24448. https://doi.org/10.1039/C5RA00666J.
  18. Chen, Y. and Kim, H. (2009), "Preparation of superhydrophobic membranes by electrospinning of fluorinated silane functionalized poly (vinylidene fluoride)", Appl. Surf. Sci., 255(15), 7073-7077. https://doi.org/10.1016/j.apsusc.2009.03.043.
  19. Chen, Y., Tian, M., Li, X., Wang, Y., An, A.K., Fang, J. and He, T. (2017), "Anti-wetting behavior of negatively charged superhydrophobic PVDF membranes in direct contact membrane distillation of emulsified wastewaters", J. Membr. Sci., 535, 230-238. https://doi.org/10.1016/j.memsci.2017.04.040.
  20. Chew, N.G.P., Zhang, Y., Goh, K., Ho, J.S., Xu, R. and Wang, R. (2019), "Hierarchically structured Janus membrane surfaces for enhanced membrane distillation performance", ACS Appl. Mater. Interfaces, 11(28), 25524-25534. https://doi.org/10.1021/acsami.9b05967.
  21. Cho, H., Choi, Y. and Lee, S. (2018), "Effect of pretreatment and operating conditions on the performance of membrane distillation for the treatment of shale gas wastewater", Desalination, 437, 195-209. https://doi.org/10.1016/j.desal.2018.03.009.
  22. Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P. and Verstraete, W. (2007), "Nitrogen removal techniques in aquaculture for a sustainable production", Aquaculture, 270, 1-14. https://doi.org/10.1016/j.aquaculture.2007.05.006.
  23. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K. and Tchobanoglous, G. (2012), Mwh's Water Treatment: Principles and Design, John Wiley & Sons, Hoboken, New Jersey, U.S.A.
  24. Cruz, H., Law, Y.Y., Guest, J.S., Rabaey, K., Batstone, D., Laycock, B., Verstraete, W. and Pikaar, I. (2019), "Mainstream ammonium recovery to advance sustainable urban wastewater management", Environ. Sci. Technol., 53(19), 11066-11079. https://doi.org/10.1021/acs.est.9b00603.
  25. Damtie, M.M., Volpin, F., Yao, M., Tijing, L.D., Hailemariam, R.H., Bao, T., Park, K.D., Shon, H.K. and Choi, J.S. (2021), "Ammonia recovery from human urine as liquid fertilizers in hollow fiber membrane contactor: Effects of permeate chemistry", Environ. Eng. Res., 26(1), 67-75. http://doi.org/10.4491/eer.2019.523.
  26. Darestani, M., Haigh, V., Couperthwaite, S.J., Millar, G.J. and Nghiem, L.D. (2017), "Hollow fibre membrane contactors for ammonia recovery: Current status and future developments", J. Environ. Chem. Eng., 5(2), 1349-1359. https://doi.org/10.1016/j.jece.2017.02.016.
  27. DashtArzhandi, M.R., Ismail, A.F. and Matsuura, T. (2015), "Carbon dioxide stripping through water by porous PVDF/montmorillonite hollow fiber mixed matrix membranes in a membrane contactor", RSC Adv., 5(28), 21916-21924. https://doi.org/10.1039/C5RA00998G.
  28. Deshmukh, A., Boo, C., Karanikola, V., Lin, S., Straub, A. P., Tong, T., Warsinger, D.M. and Elimelech, M. (2018), "Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges", Energy Environ. Sci., 11(5), 1177-1196. https://doi.org/10.1039/C8EE00291F.
  29. Dindore, V.Y., Brilman, D.W.F., Geuzebroek, F.H. and Versteeg, G.F. (2004), "Membrane-solvent selection for CO2 removal using membrane gas-liquid contactors", Sep. Purif. Technol., 40(2), 133-145. https://doi.org/10.1016/j.seppur.2004.01.014.
  30. Ding, Z., Liu, L., Li, Z., Ma, R. and Yang, Z. (2006), "Experimental study of ammonia removal from water by membrane distillation (MD): The comparison of three configurations", J. Membr. Sci., 286(1-2), 93-103. https://doi.org/10.1016/j.memsci.2006.09.015.
  31. Dong, Z.Q., Wang, B.J., Ma, X.H., Wei, Y.M. and Xu, Z.L. (2015), "FAS grafted electrospun poly (vinyl alcohol) nanofiber membranes with robust superhydrophobicity for membrane distillation", ACS Appl. Mater. Interfaces, 7(40), 22652-22659. https://doi.org/10.1021/acsami.5b07454.
  32. Dube, P.J., Vanotti, M.B., Szogi, A.A. and Garcia-Gonzalez, M.C. (2016), "Enhancing recovery of ammonia from swine manure anaerobic digester effluent using gas-permeable membrane technology", Waste Manage., 49, 372-377. https://doi.org/10.1016/j.wasman.2015.12.011.
  33. Gabelman, A. and Hwang, S.T. (1999), "Hollow fiber membrane contactors", J. Membr. Sci., 159(1-2), 61-106. https://doi.org/10.1016/S0376-7388(99)00040-X.
  34. Garcia-Gonzalez, M.C. and Vanotti, M.B. (2015), "Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH", Waste Manage., 38, 455-461. https://doi.org/10.1016/j.wasman.2015.01.021.
  35. Garcia-Gonzalez, M.C., Vanotti, M.B. and Szogi, A.A. (2015), "Recovery of ammonia from swine manure using gaspermeable membranes: Effect of aeration", J. Environ. Manage., 152, 19-26. https://doi.org/10.1016/j.jenvman.2015.01.013.
  36. Gryta, M. (2008), "Fouling in direct contact membrane distillation process", J. Membr. Sci., 325(1), 383-394. https://doi.org/10.1016/j.memsci.2008.08.001.
  37. Gryta, M. (2012), "Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation", Desalination, 285, 170-176. https://doi.org/10.1016/j.desal.2011.09.051.
  38. Gryta, M. (2020), "Separation of saline oily wastewater by membrane distillation", Chem. Pap., 74(7), 2277-2286. https://doi.org/10.1007/s11696-020-01071-y.
  39. Hamzah, N. and Leo, C.P. (2017), "Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation", Desalination, 418, 79-88. https://doi.org/10.1016/j.desal.2017.05.029.
  40. Han, B., Shen, Z. and Wickramasinghe, S.R. (2005), "Cyanide removal from industrial wastewaters using gas membranes", J. Membr. Sci., 257(1-2), 171-181. https://doi.org/10.1016/j.memsci.2004.06.064.
  41. Hasanoglu, A., Romero, J., Perez, B. and Plaza, A. (2010), "Ammonia removal from wastewater streams through membrane contactors: Experimental and theoretical analysis of operation parameters and configuration", Chem. Eng. J., 160(2), 530-537. https://doi.org/10.1016/j.cej.2010.03.064.
  42. He, F., Sirkar, K.K. and Gilron, J. (2009), "Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation", J. Membr. Sci., 345(1-2), 53-58. https://doi.org/10.1016/j.memsci.2009.08.021.
  43. Henares, M., Ferrero, P., San-Valero, P., Martinez-Soria, V. and Izquierdo, M. (2018), "Performance of a polypropylene membrane contactor for the recovery of dissolved methane from anaerobic effluents: Mass transfer evaluation, long-term operation and cleaning strategies", J. Membr. Sci., 563, 926-937. https://doi.org/10.1016/j.memsci.2018.06.045.
  44. Himma, N. F., Prasetya, N., Anisah, S. and Wenten, I. G. (2019), "Superhydrophobic membrane: progress in preparation and its separation properties", Rev. Chem. Eng., 35(2), 211-238. https://doi.org/10.1515/revce-2017-0030.
  45. Hosseini, S. and Mansourizadeh, A. (2017), "Preparation of porous hydrophobic poly (vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO2 stripping", J. Taiwan Inst. Chem. Eng., 76, 156-166. https://doi.org/10.1016/j.jtice.2017.04.014.
  46. Hou, D., Ding, C., Li, K., Lin, D., Wang, D. and Wang, J. (2018), "A novel dual-layer composite membrane with underwater-superoleophobic/hydrophobic asymmetric wettability for robust oil-fouling resistance in membrane distillation desalination", Desalination, 428, 240-249. https://doi.org/10.1016/j.desal.2017.11.039.
  47. Hou, D., Iddya, A., Chen, X., Wang, M., Zhang, W., Ding, Y., Jassby, D. and Ren, Z.J. (2018), "Nickel-based membrane electrodes enable high-rate electrochemical ammonia recovery", Environ. Sci. Technol., 52(15), 8930-8938. https://doi.org/10.1021/acs.est.8b01349.
  48. Hou, D., Jassby, D., Nerenberg, R. and Ren, Z.J. (2019), "Hydrophobic gas transfer membranes for wastewater treatment and resource recovery", Environ. Sci. Technol., 53(20), 11618-11635. https://doi.org/10.1021/acs.est.9b00902.
  49. Huang, H., Xiao, X., Yan, B. and Yang, L. (2010), "Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent", J. Hazard. Mater., 175(1-3), 247-252. https://doi.org/10.1016/j.jhazmat.2009.09.156.
  50. Huang, Y.X., Wang, Z., Jin, J. and Lin, S. (2017), "Novel Janus membrane for membrane distillation with simultaneous fouling and wetting resistance", Environ. Sci. Technol., 51(22), 13304-13310. https://doi.org/10.1021/acs.est.7b02848.
  51. Jafari, M., Vanoppen, M., van Agtmaal, J.M.C., Cornelissen, E.R., Vrouwenvelder, J.S., Verliefde, A., van Loosdrecht, M.C.M. and Picioreanu, C. (2021), "Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands", Desalination, 500, 114865. https://doi.org/10.1016/j.desal.2020.114865.
  52. Jiahui, S.H.A.O., Xuliang, F., Yiliang, H.E. and Qiang, J.I.N. (2008), "Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants", J. Environ. Sci., 20(10), 1189-1194. https://doi.org/10.1016/S1001-0742(08)62208-1.
  53. Ju, J., Fejjari, K., Cheng, Y., Liu, M., Li, Z., Kang, W. and Liao, Y. (2020), "Engineering hierarchically structured superhydrophobic PTFE/POSS nanofibrous membranes for membrane distillation", Desalination, 486, 114481. https://doi.org/10.1016/j.desal.2020.114481.
  54. Karanikola, V., Boo, C., Rolf, J. and Elimelech, M. (2018), "Engineered slippery surface to mitigate gypsum scaling in membrane distillation for treatment of hypersaline industrial wastewaters", Environ. Sci. Technol., 52(24), 14362-14370. https://doi.org/10.1021/acs.est.8b04836.
  55. Khaisri, S., deMontigny, D., Tontiwachwuthikul, P. and Jiraratananon, R. (2009), "Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor", Sep. Purif. Technol., 65(3), 290-297. https://doi.org/10.1016/j.seppur.2008.10.035.
  56. Klaassen, R. and Jansen, A.E. (2001), "The membrane contactor: Environmental applications and possibilities", Environ. Prog., 20(1), 37-43. https://doi.org/10.1002/ep.670200114.
  57. Kuntke, P., Sleutels, T.H.J.A., Arredondo, M.R., Georg, S., Barbosa, S.G., ter Heijne, A., Hamelers, H.V.M. and Buisman, C.J.N. (2018), "(Bio) electrochemical ammonia recovery: Progress and perspectives", Appl. Microbiol. Biotechnol., 102(9), 3865-3878. https://doi.org/10.1007/s00253-018-8888-6.
  58. Kwak, S. and Yun, Z. (2020). "The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin", Membr. Water Treat., 11(5), 345-351. https://doi.org/10.12989/mwt.2020.11.5.345.
  59. Laknera, J., Laknera, G., Bakonyib, P. and Belafi-Bakob, K. (2020), "Kinetics of TransMembrane ChemiSorption for wastewater with high ammonia contents", Desalin. Water Treat., 192, 444-450. https://doi.org/10.5004/dwt.2020.25872.
  60. Lauterbock, B., Ortner, M., Haider, R. and Fuchs, W. (2012), "Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor", Water Res., 46(15), 4861-4869. https://doi.org/10.1016/j.watres.2012.05.022.
  61. Lee, W., An, S. and Choi, Y. (2021), "Ammonia harvesting via membrane gas extraction at moderately alkaline pH: A step toward net-profitable nitrogen recovery from domestic wastewater", Chem. Eng. J., 405, 126662. https://doi.org/10.1016/j.cej.2020.126662.
  62. Lee, W. and Choi, Y. (2022), "Facile preparation of robust anti-wetting membrane by simple two-step FeOOH and fluorosilane membrane modification", Chem. Eng. J., 136112. https://doi.org/10.1016/j.cej.2022.136112.
  63. Li, J.L. and Chen, B.H. (2005), "Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors", Sep. Purif. Technol., 41(2), 109-122. https://doi.org/10.1016/j.seppur.2004.09.008.
  64. Li, X., Dutta, A., Saha, S., Lee, H.S. and Lee, J. (2020), "Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor", Water Res., 175, 115693. https://doi.org/10.1016/j.watres.2020.115693.
  65. Li, Z., Rana, D., Matsuura, T. and Lan, C.Q. (2019), "The performance of polyvinylidene fluoride-polytetrafluoroethylene nanocomposite distillation membranes: An experimental and numerical study", Sep. Purif. Technol., 226, 192-208. https://doi.org/10.1016/j.seppur.2019.05.102.
  66. Licon Bernal, E.E., Alcaraz, A., Casas, S., Valderrama, C. and Cortina, J.L. (2016), "Trace ammonium removal by liquid-liquid membrane contactors as water polishing step of water electrolysis for hydrogen production from a wastewater treatment plant effluent", J. Chem. Technol. Biotechnol., 91(12), 2983-2993. https://doi.org/10.1002/jctb.4923.
  67. Licon, E., Reig, M., Villanova, P., Valderrama, C., Gibert, O. and Cortina, J.L. (2015), "Ammonium removal by liquid-liquid membrane contactors in water purification process for hydrogen production", Desalin. Water Treat., 56(13), 3607-3616. https://doi.org/10.1080/19443994.2014.974216.
  68. Lin, S., Nejati, S., Boo, C., Hu, Y., Osuji, C.O. and Elimelech, M. (2014), "Omniphobic membrane for robust membrane distillation", Environ. Sci. Technol. Lett., 1(11), 443-447. https://doi.org/10.1021/ez500267p.
  69. Liu, F., Hashim, N. A., Liu, Y., Abed, M.M. and Li, K. (2011), "Progress in the production and modification of PVDF membranes", J. Membr. Sci., 375(1-2), 1-27. https://doi.org/10.1016/j.memsci.2011.03.014.
  70. Liu, H. and Wang, J. (2016), "Separation of ammonia from radioactive wastewater by hydrophobic membrane contactor", Prog. Nucl. Energy, 86, 97-102. https://doi.org/10.1016/j.pnucene.2015.10.011.
  71. Lopez-Ortega, A., Areitioaurtena, O., Alves, S.A., Goitandia, A.M., Elexpe, I., Arana, J.L. and Bayon, R. (2019), "Development of a superhydrophobic and bactericide organic topcoat to be applied on thermally sprayed aluminum coatings in offshore submerged components", Prog. Org. Coat., 137, 105376. https://doi.org/10.1016/j.porgcoat.2019.105376.
  72. Lu, J.G., Zheng, Y.F. and Cheng, M.D. (2008), "Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption", J. Membr. Sci., 308(1-2), 180-190. https://doi.org/10.1016/j.memsci.2007.09.051.
  73. Lv, J., Gong, Z., He, Z., Yang, J., Chen, Y., Tang, C., Liu, Y., Fan, M. and Lau, W.M. (2017), "3D printing of a mechanically durable superhydrophobic porous membrane for oil-water separation", J. Mater. Chem. A, 5(24), 12435-12444. https://doi.org/10.1039/C7TA02202F.
  74. Mandal, P., Dubey, B.K. and Gupta, A.K. (2017), "Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope", Waste Manage., 69, 250-273. https://doi.org/10.1016/j.wasman.2017.08.034.
  75. Mansourizadeh, A. (2012), "Experimental study of CO2 absorption/stripping via PVDF hollow fiber membrane contactor", Chem. Eng. Res. Des., 90(4), 555-562. https://doi.org/10.1016/j.cherd.2011.08.017.
  76. Mansourizadeh, A. and Ismail, A.F. (2010), "Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption", Chem. Eng. J., 165(3), 980-988. https://doi.org/10.1016/j.cej.2010.10.034.
  77. Martin, A. and Dahl, O. (2020), "Techno-economic system analysis of membrane distillation process for treatment of chemical mechanical planarization wastewater in nano-electronics industries", Sep. Purif. Technol., 248, 117013. https://doi.org/10.1016/j.seppur.2020.117013.
  78. Martin, M. (2016), Industrial Chemical Process Analysis and Design, Elsevier.
  79. Niknejad, A.S., Bazgir, S. and Kargari, A. (2021), "Desalination by direct contact membrane distillation using a superhydrophobic nanofibrous poly (methyl methacrylate) membrane", Desalination, 511, 115108. https://doi.org/10.1016/j.desal.2021.115108.
  80. Obotey Ezugbe, E. and Rathilal, S. (2020), "Membrane technologies in wastewater treatment: A review", Membranes, 10(5), 89. https://doi.org/10.3390/membranes10050089.
  81. Onsekizoglu, P. (2012), "Membrane distillation: Principle, advances, limitations and future prospects in food industry", Distillation-Advances from Modeling to Applications, 282.
  82. Pandey, B. and Chen, L. (2021), "Technologies to recover nitrogen from livestock manure-A review", Sci. Total Environ., 147098. https://doi.org/10.1016/j.scitotenv.2021.147098.
  83. Pang, H., Tian, K., Li, Y., Su, C., Duan, F. and Xu, Y. (2021), "Super-hydrophobic PTFE hollow fiber membrane fabricated by electrospinning of Pullulan/PTFE emulsion for membrane deamination", Sep. Purif. Technol., 274, 118186. https://doi.org/10.1016/j.seppur.2020.118186.
  84. Peng, Y. (2017), "Perspectives on technology for landfill leachate treatment", Arab. J. Chem., 10, S2567-S2574. https://doi.org/10.1016/j.arabjc.2013.09.031.
  85. Pornea, A.M., Puguan, J.M.C., Deonikar, V.G. and Kim, H. (2020), "Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation", Sep. Purif. Technol., 236, 116297. https://doi.org/10.1016/j.seppur.2019.116297.
  86. Qin, M., Liu, Y., Luo, S., Qiao, R. and He, Z. (2017), "Integrated experimental and modeling evaluation of energy consumption for ammonia recovery in bioelectrochemical systems", Chem. Eng. J., 327, 924-931. https://doi.org/10.1016/j.cej.2017.06.182.
  87. Qing, W., Wu, Y., Li, X., Shi, X., Shao, S., Mei, Y., Zhang, W. and Tang, C.Y. (2020), "Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation", J. Membr. Sci., 608, 118226. https://doi.org/10.1016/j.memsci.2020.118226.
  88. Qu, D., Wang, J., Wang, L., Hou, D., Luan, Z. and Wang, B. (2009), "Integration of accelerated precipitation softening with membrane distillation for high-recovery desalination of primary reverse osmosis concentrate", Sep. Purif. Technol., 67(1), 21-25. https://doi.org/10.1016/j.seppur.2009.02.021.
  89. Qu, D., Zhou, T., Ma, W., Peng, Z., Li, Z. and Qin, M. (2016), "Comparison of hollow fiber module designs in membrane distillation process employed lumen-side and shell-side feed", Desalin. Water Treat., 57(17), 7700-7710. https://doi.org/10.1080/19443994.2015.1049561.
  90. Rahim, N.A., Ghasem, N. and Al-Marzouqi, M. (2015), "Absorption of CO2 from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors", J. Nat. Gas Sci. Eng., 26, 108-117. https://doi.org/10.1016/j.jngse.2015.06.010.
  91. Razmjou, A., Arifin, E., Dong, G., Mansouri, J. and Chen, V. (2012), "Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation", J. Membr. Sci., 415, 850-863. https://doi.org/10.1016/j.memsci.2012.06.004.
  92. Rezakazemi, M., Shirazian, S. and Ashrafizadeh, S.N. (2012), "Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor", Desalination, 285, 383-392. https://doi.org/10.1016/j.desal.2011.10.030.
  93. Rongwong, W. and Goh, K. (2020), "Resource recovery from industrial wastewaters by hydrophobic membrane contactors: A review", J. Environ. Chem. Eng., 104242. https://doi.org/10.1016/j.jece.2020.104242.
  94. Rothrock Jr, M.J., Szogi, A.A. and Vanotti, M.B. (2013), "Recovery of ammonia from poultry litter using flat gas permeable membranes", Waste Manage., 33(6), 1531-1538. https://doi.org/10.1016/j.wasman.2013.03.011.
  95. Sancho, I., Licon, E., Valderrama, C., de Arespacochaga, N., Lopez-Palau, S. and Cortina, J.L. (2017), "Recovery of ammonia from domestic wastewater effluents as liquid fertilizers by integration of natural zeolites and hollow fibre membrane contactors", Sci. Total Environ., 584, 244-251. https://doi.org/10.1016/j.scitotenv.2017.01.123.
  96. Sarp, S. and Hilal, N. (Eds.). (2018), Membrane-Based Salinity Gradient Processes for Water Treatment and Power Generation, Elsevier, Amsterdam, Netherlands.
  97. Shaddel, S., Grini, T., Ucar, S., Azrague, K., Andreassen, J.P. and O sterhus, S.W. (2020), "Struvite crystallization by using raw seawater: Improving economics and environmental footprint while maintaining phosphorus recovery and product quality", Water Res., 173, 115572. https://doi.org/10.1016/j.watres.2020.115572.
  98. Shao, Y., Han, M., Wang, Y., Li, G., Xiao, W., Li, X., Wu, X., Ruan, X., Yan, X., He, G. and Jiang, X. (2019), "Superhydrophobic polypropylene membrane with fabricated antifouling interface for vacuum membrane distillation treating high concentration sodium/magnesium saline water", J. Membr. Sci., 579, 240-252. https://doi.org/10.1016/j.memsci.2019.03.007.
  99. Shen, S., Kentish, S.E. and Stevens, G.W. (2012), "Effects of operational conditions on the removal of phenols from wastewater by a hollow-fiber membrane contactor", Sep. Purif. Technol., 95, 80-88. https://doi.org/10.1016/j.seppur.2012.04.023.
  100. Shi, M., He, Q., Feng, L., Wu, L. and Yan, S. (2020), "Techno-economic evaluation of ammonia recovery from biogas slurry by vacuum membrane distillation without pH adjustment", J. Clean. Prod., 265, 121806. https://doi.org/10.1016/j.jclepro.2020.121806.
  101. Soz, C.K., Trosien, S. and Biesalski, M. (2020), "Janus interface materials: a critical review and comparative study", ACS Mater. Lett., 2(4), 336-357. https://doi.org/10.1021/acsmaterialslett.9b00489.
  102. Sun, S.P., Nacher, C.P.I., Merkey, B., Zhou, Q., Xia, S.Q., Yang, D.H., Sun, J.H. and Smets, B.F. (2010), "Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: A review", Environ. Eng. Sci., 27(2), 111-126. https://doi.org/10.1089/ees.2009.0100.
  103. Tang, C.Y., Chong, T.H. and Fane, A.G. (2011), "Colloidal interactions and fouling of NF and RO membranes: A review", Adv. Colloid Interface Sci., 164(1-2), 126-143. https://doi.org/10.1016/j.cis.2010.10.007.
  104. Tarpeh, W.A., Barazesh, J.M., Cath, T.Y. and Nelson, K.L. (2018), "Electrochemical stripping to recover nitrogen from source-separated urine", Environ. Sci. Technol., 52(3), 1453-1460. https://doi.org/10.1021/acs.est.7b05488.
  105. Tijing, L.D., Woo, Y.C., Choi, J.S., Lee, S., Kim, S.H. and Shon, H.K. (2015), "Fouling and its control in membrane distillation: A review", J. Membr. Sci., 475, 215-244. https://doi.org/10.1016/j.memsci.2014.09.042.
  106. Toh, M.J., Oh, P.C., Chew, T.L. and Ahmad, A.L. (2020), "Preparation of polydimethylsiloxane-SiO2/PVDF-HFP mixed matrix membrane of enhanced wetting resistance for membrane gas absorption", Sep. Purif. Technol., 244, 116543. https://doi.org/10.1016/j.seppur.2020.116543.
  107. Tun, L.L., Jeong, D., Jeong, S., Cho, K., Lee, S. and Bae, H. (2016), "Dewatering of source-separated human urine for nitrogen recovery by membrane distillation", J. Membr. Sci., 512, 13-20. https://doi.org/10.1016/j.memsci.2016.04.004.
  108. Ulbricht, M., Schneider, J., Stasiak, M. and Sengupta, A. (2013), "Ammonia recovery from industrial wastewater by Trans-MembraneChemiSorption", Chemie Ingenieur Technik, 85(8), 1259-1262. https://doi.org/10.1002/cite.201200237.
  109. Uludag-Demirer, S., Demirer, G.N. and Chen, S.J.P.B. (2005), "Ammonia removal from anaerobically digested dairy manure by struvite precipitation", Process Biochem., 40(12), 3667-3674. https://doi.org/10.1016/j.procbio.2005.02.028.
  110. Urper, G. M., Sengur-Tasdemir, R., Turken, T., Ates Genceli, E., Tarabara, V.V. and Koyuncu, I. (2017), "Hollow fiber nano-filtration membranes: A comparative review of interfacial polymerization and phase inversion fabrication methods", Sep. Sci. Technol., 52(13), 2120-2136. https://doi.org/10.1080/01496395.2017.1321668.
  111. Kaljunen, J.U., Al-Juboori, R.A., Mikola, A., Righetto, I. and Konola, I. (2021), "Newly developed membrane contactor-based N and P recovery process: Pilot-scale field experiments and cost analysis", J. Clean. Prod., 281, 125288. https://doi.org/10.1016/j.jclepro.2020.125288.
  112. Kalla, S., Upadhyaya, S. and Singh, K. (2019), "Principles and advancements of air gap membrane distillation", Rev. Chem. Eng., 35(7), 817-859. https://doi.org/10.1515/revce-2017-0112.
  113. Khaisri, S., deMontigny, D., Tontiwachwuthikul, P. and Jiraratananon, R. (2009), "Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor", Sep. Purif. Technol., 65(3), 290-297. https://doi.org/10.1016/j.seppur.2008.10.035.
  114. Vanotti, M.B., Dube, P.J., Szogi, A.A. and Garcia-Gonzalez, M.C. (2017), "Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes", Water Res., 112, 137-146. https://doi.org/10.1016/j.watres.2017.01.045.
  115. Vecino, X., Reig, M., Bhushan, B., Gibert, O., Valderrama, C. and Cortina, J.L. (2019), "Liquid fertilizer production by ammonia recovery from treated ammonia-rich regenerated streams using liquid-liquid membrane contactors", Chem. Eng. J., 360, 890-899. https://doi.org/10.1016/j.cej.2018.12.004.
  116. Waeger-Baumann, F. and Fuchs, W. (2012), "The application of membrane contactors for the removal of ammonium from anaerobic digester effluent", Sep. Sci. Technol., 47(10), 1436-1442. https://doi.org/10.1080/01496395.2011.653468.
  117. Wang, J., Qu, D., Tie, M., Ren, H., Peng, X. and Luan, Z. (2008), "Effect of coagulation pretreatment on membrane distillation process for desalination of recirculating cooling water", Sep. Purif. Technol., 64(1), 108-115. https://doi.org/10.1016/j.seppur.2008.07.022.
  118. Wang, P. and Chung, T.S. (2015), "Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring", J. Membr. Sci., 474, 39-56. https://doi.org/10.1016/j.memsci.2014.09.016.
  119. Wang, Y.J., Zhao, Z.P., Xi, Z.Y. and Yan, S.Y. (2018), "Microporous polypropylene membrane prepared via TIPS using environment-friendly binary diluents and its VMD performance", J. Membr. Sci., 548, 332-344. https://doi.org/10.1016/j.memsci.2017.11.023.
  120. Wang, Y., Liu, S., Xu, Z., Han, T., Chuan, S. and Zhu, T. (2006), "Ammonia removal from leachate solution using natural Chinese clinoptilolite", J. Hazard. Mater., 136(3), 735-740. https://doi.org/10.1016/j.jhazmat.2006.01.002.
  121. Wang, Y., Qiu, B., Xiao, Z., Liu, J., Fan, S. and Tang, X. (2021). "Hybrid desalination system of mechanical vapor recompression based on membrane distillation", Membr. Water Treat., 12(3), 115-123. https://doi.org/10.12989/mwt.2021.12.3.115.
  122. Warsinger, D.M., Chakraborty, S., Tow, E.W., Plumlee, M.H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A.M. Achilli, A., Ghassemi, A., Padhye, L.P., Snyder, S.A., Curcio, S,, Vecitis, C.D., Arafat, H.A. and Lienhard, J.H. (2018), "A review of polymeric membranes and processes for potable water reuse", Prog. Polym. Sci., 81, 209-237. https://doi.org/10.1016/j.progpolymsci.2018.01.004.
  123. Warsinger, D.M., Servi, A., Connors, G.B., Mavukkandy, M.O., Arafat, H.A. and Gleason, K.K. (2017), "Reversing membrane wetting in membrane distillation: Comparing dryout to backwashing with pressurized air", Environ. Sci. Water Res. Technol., 3(5), 930-939. https://doi.org/10.1039/C7EW00085E.
  124. Warsinger, D.M., Swaminathan, J., Guillen-Burrieza, E. and Arafat, H.A. (2015), "Scaling and fouling in membrane distillation for desalination applications: A review", Desalination, 356, 294-313. https://doi.org/10.1016/j.desal.2014.06.031.
  125. Xie, M., Shon, H.K., Gray, S.R. and Elimelech, M. (2016), "Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction", Water Res., 89, 210-221. https://doi.org/10.1016/j.watres.2015.11.045.
  126. Xu, Y., Goh, K., Wang, R. and Bae, T.H. (2019), "A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction", Sep. Purif. Technol., 229, 115791. https://doi.org/10.1016/j.seppur.2019.115791.
  127. Yan, H. and Shih, K. (2016), "Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis", Water Res., 95, 310-318. https://doi.org/10.1016/j.watres.2016.03.032.
  128. Yan, H., Wu, L., Wang, Y., Irfan, M., Jiang, C. and Xu, T. (2020), "Ammonia capture from wastewater with a high ammonia nitrogen concentration by water splitting and hollow fiber extraction", Chem. Eng. Sci., 227, 115934. https://doi.org/10.1016/j.ces.2020.115934.
  129. Yan, H., Wu, L., Wang, Y., Shehzad, M.A. and Xu, T. (2018), "Ammonia capture by water splitting and hollow fiber extraction", Chem. Eng. Sci., 192, 211-217. https://doi.org/10.1016/j.ces.2018.07.040.
  130. Yan, Z., Cheng, S., Zhang, J., Saroj, D.P., Mang, H.P., Han, Y., Zhang, L., Basandorj, D., Zheng, L. and Li, Z. (2021), "Precipitation in urine source separation systems: Challenges for large-scale practical applications", Resour. Conserv. Recy., 169, 105479. https://doi.org/10.1016/j.resconrec.2021.105479.
  131. Ye, Y., Yu, S., Liu, B., Xia, Q., Liu, G. and Li, P. (2019), "Microbubble aeration enhances performance of vacuum membrane distillation desalination by alleviating membrane scaling", Water Res., 149, 588-595. https://doi.org/10.1016/j.watres.2018.11.048.
  132. Yuan, M.H., Chen, Y.H., Tsai, J.Y. and Chang, C.Y. (2016), "Ammonia removal from ammonia-rich wastewater by air stripping using a rotating packed bed", Process Saf. Environ., 102, 777-785. https://doi.org/10.1016/j.psep.2016.06.021.
  133. Zarebska, A., Amor, A .C., Ciurkot, K., Karring, H., Thygesen, O., Andersen, T.P., Hagg, M.B., Christensen, K.B. and Norddahl, B. (2015), "Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure", J. Membr. Sci., 484, 119-132. https://doi.org/10.1016/j.memsci.2015.03.010.
  134. Zhang, J., Xie, M., Tong, X., Liu, S., Qu, D. and Xiao, S. (2020), "Recovery of ammonium nitrogen from human urine by an open-loop hollow fiber membrane contactor", Sep. Purif. Technol., 239, 116579. https://doi.org/10.1016/j.seppur.2020.116579.
  135. Zhang, J., Xie, M., Tong, X., Yang, D., Liu, S., Qu, D., Feng, L. and Zhang, L. (2021), "Ammonia capture from human urine to harvest liquid NP compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis", Sci. Total Environ., 768, 144478. https://doi.org/10.1016/j.scitotenv.2020.144478.
  136. Zhang, Z., Du, X., Carlson, K.H., Robbins, C.A. and Tong, T. (2019), "Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration", Desalination, 454, 82-90. https://doi.org/10.1016/j.desal.2018.12.011.
  137. Zhao, J., Shi, L., Loh, C.H. and Wang, R. (2018), "Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane distillation via thermally induced phase separation method", Desalination, 430, 86-97. https://doi.org/10.1016/j.desal.2017.12.041.
  138. Zhao, S., Feron, P.H., Deng, L., Favre, E., Chabanon, E., Yan, S., Hou, J., Chen, V. and Qi, H. (2016), "Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments", J. Membr. Sci., 511, 180-206. https://doi.org/10.1016/j.memsci.2016.03.051.
  139. Zhao, S., Tao, Z., Han, M., Huang, Y.X., Zhao, B., Wang, L., Tian, X. and Meng, F. (2021), "Hierarchical Janus membrane with superior fouling and wetting resistance for efficient water recovery from challenging wastewater via membrane distillation", J. Membr. Sci., 618, 118676. https://doi.org/10.1016/j.memsci.2020.118676.
  140. Zhiqing, Y., Xiaolong, L., Chunrui, W. and Xuan, W. (2013), "Effect of pretreatment on membrane fouling and VMD performance in the treatment of RO-concentrated wastewater", Desalin. Water Treat., 51(37-39), 6994-7003. https://doi.org/10.1080/19443994.2013.772541.
  141. Zhu, Z., Hao, Z., Shen, Z. and Chen, J. (2005), "Modified modeling of the effect of pH and viscosity on the mass transfer in hydrophobic hollow fiber membrane contactors", J. Membr. Sci., 250(1-2), 269-276. https://doi.org/10.1016/j.memsci.2004.10.031.
  142. Zhu, Z., Zhong, L., Chen, X., Zheng, W., Zuo, J., Zeng, G. and Wang, W. (2020), "Monolithic and self-roughened Janus fibrous membrane with superhydrophilic/omniphobic surface for robust antifouling and antiwetting membrane distillation", J. Membr. Sci., 615, 118499. https://doi.org/10.1016/j.memsci.2020.118499.