• Title/Summary/Keyword: Global e-port

Search Result 42, Processing Time 0.022 seconds

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Multi-Agent based Operation System Modeling for Automated Container Terminals (자동화 컨테이너 터미널을 위한 멀티에이전트 기반의 운영시스템 모델링)

  • Kang K W.;Yu S. Y.;Mo S. J.;Yim J. H.
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.567-572
    • /
    • 2005
  • Trade between nations has been globalized since establishing the WTO(World Trade Organization). By lowering trading barriers under the WTO's system, trade in goods has been gradually increased It requires global logistic system that transports goods in between nations. To save cost of product, cargo of product is containerized and container ships to carry container cargo is going to be bigger: In the market, there are many vendors to provide artificial intelligent modules to operate container terminal. In order to integrate automated container terminal system easily and successfully, this thesis proposes high-level XML/ JMS( eXtensive Markup Language/Java Message Service) communication model and multi-agent based system architecture to share knowledges, solve problems, and active objectives by cooperating between autonomous and intelligent agents that are developed by 3rd party companies in the market. This thesis analyzed current situation of advanced automated container terminal with case studies on implemented systems and difficulties to develop automated container terminal system, reviewed technologies of intelligent agent, communication and automation that unmaned automated container terminal is required.

Charisma: Trimble's Modernized Differential GPS Reference Station and Integrity Monitor Software

  • Remondi, Benjamin W.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.221-226
    • /
    • 2006
  • Around 2002, the United States Coast Guard (USCG) identified a need to re-capitalize their Reference Station (RS) and Integrity Monitor (IM) equipment used in the Nationwide Differential Global Position System (NDGPS). Commercially available off-the-shelf differential RS and IM equipment lacked the open architecture required to support long-term goals that include future system improvements such as use of new civil frequencies on L2 and L5 and realization of a higher rate NDGPS beacon data channel intended to support RTK. The first step in preparing for this future NDGPS was to port current RTCM SC-104 compatible RS and IM functionality onto an open architecture PC-based platform. Trimble's product Charisma is a PC-based RS and IM software designed to meet these USCG goals. In fact USCG engineers provided key designs and design insights throughout the development. We cannot overstate the contribution of the USCG engineers. Fundamental requirements for this effort were that it be sufficiently flexible in hardware and software design to support fluid growth and exploitation of new signals and technologies as they become available, yet remain backward compatible with legacy user receivers and existing site hardware and system architecture. These fundamental goals placed an implicit adaptability requirement on the design of the replacement RS and IM. Additionally, project engineers were to remain focused on sustaining the high level of differential GPS service that 1.5 million legacy users have come to depend on. This paper will present new hardware and software (i.e., Trimble's Charisma software) architecture for the next generation NDGPS RS and IM. This innovative approach to engineering on an open architecture PC-based platform allows the system to continue to fulfill legacy NDGPS system requirements and allows the USCG and others to pursue a scalable hardware re-capitalization strategy. We will use the USCG's recapitalization project to explain the essential role of the Charisma software.

  • PDF

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

A Study on Backup PNT Service for Korean Maritime Using NDGNSS (NDGNSS 인프라를 활용한 국내 해상 백업 PNT 서비스 연구)

  • Han, Young-Hoon;Lee, Sang-Heon;Park, Sul-Gee;Fang, Tae-Hyun;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.42-48
    • /
    • 2019
  • The significance of PNT information in the fourth industrial revolution is viewed differently in relation to the past. Autonomous vehicles, autonomous vessels, smart grids, and national infrastructure require sustainable and reliable services in addition to their high precision service. Satellite navigation system, which is the most representative system for providing PNT information, receive signals from satellites outside the earth so signal reception power is low and signal structures for civilian use are open to the public. Therefore, it is vulnerable to intentional and unintentional interference or hacking. Satellite navigation systems, which can easily acquire high performance of PNT information at low cost, require alternatives due to its vulnerability to the hacking. This paper proposed R-Mode (Ranging Mode) technology that utilizes currently operated navigation and communication infrastructure in terms of Signals of OPportunity (SoOP). For this, the Nationwide Differential Global Navigation Satellite System (NDGNSS), which currently gives a service of Medium Frequency (MF) navigation signal broadcasting, was used to validate the feasibility of a backup infrastructure in domestic maritime areas through simulation analysis.

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

A Study on the Industrial Competitiveness Analysis of Domestic Autonomous Operation Technology Industry Based on the Porter's Diamond Model (국내 자율운항기술 분야의 산업경쟁력 분석 연구 - 포터(Porter)의 다이아몬드 모델을 기반으로)

  • PARK, Hye-Ri;PARK, Han-Seon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.203-208
    • /
    • 2022
  • Recently, various digital technology issues such as e-Navigation, Maritime Autonomous Surface Ship (MASS) and Smart ships have constantly emerged in the maritime industry, based on the fourth industrial revolution. The International Maritime Organization is gradually tightening regulations for marine safety and marine environmental protection, and these strengthened regulations are leading to new maritime industries. Thus, the purpose of this study was to design a suitable model to analyze the industrial competitiveness of domestic autonomous operation technology industry, based on the Porter's diamond model. Based on a total of five evaluation factors and 13 detailed factors, the industrial competitiveness of the domestic autonomous operation technology industry was evaluated qualitatively and quantitatively. This industry, which is in the early stage of industrial development, was evaluated as 16.9 points relative to indexing industrial competitiveness. Currently, it is characterized by the simultaneous development of related regulations and core technologies, from the establishment of the scope of the industry. The industrial competitiveness evaluation considering these industrial characteristics is expected to serve as the basis for strategic support and new industrial policy, and impact a wide range of related industries such as shipping, logistics, ports, and shipbuilding and equipment industries.

Performance Evaluation Plan of Maritime VHF Digital Communications System (해상용 VHF 디지털통신 시스템의 성능평가 방안)

  • Ju, Yang-Ro;Kim, Kab-Ki;Choi, Jo-Cheon;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.582-588
    • /
    • 2014
  • IMO and IALA have undertaken projects that GMDSS Modernization and E-navigation, which refer to "Future digital communications systems" for a more efficient transmission of voice and data communications in the VHF maritime mobile service. ITU has also resolved in WRC-07 Resolution 357 to study the use of spectrum-efficient technologies in order to provide for the operation of ship and port security and maritime safety systems. IALA and ITU WP5B have coordinated for the technical developments and the spectrum issues. Recommendation ITU-R M.1842-1 has approved by WP5B meeting. This revision provides a wideband data service both 50kHz and 100kHz in the VHF maritime mobile service. This paper has studied E-navigation, its needs for data exchange that includes explanations of the current methods for transmitting data by VHF that based in land mobile radio service. A further technologies trend is estimated for Recommendation ITU-R M.1842-1, that is based on the land mobile radio standards with some tailored to fit the needs of the maritime mobile service.

A Heuristic Algorithm for a Ship Speed and Bunkering Decision Problem (선박속력 및 급유결정 문제에 대한 휴리스틱 알고리즘)

  • Kim, Hwa-Joong;Kim, Jae-Gon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • Maritime transport is now regarded as one of the main contributors to global climate change by virtue of its $CO_2$ emissions. Meanwhile, slow steaming, i.e., slower ship speed, has become a common practice in the maritime industry so as to lower $CO_2$ emissions and reduce bunker fuel consumption. The practice raised various operational decision issues in terms of shipping companies: how much ship speed is, how much to bunker the fuel, and at which port to bunker. In this context, this study addresses an operation problem in a shipping companies, which is the problem of determining the ship speed, bunkering ports, and bunkering amount at the ports over a given ship route to minimize the bunker fuel and ship time costs as well as the carbon tax which is a regulatory measure aiming at reducing $CO_2$ emissions. The ship time cost is included in the problem because slow steaming increases transit times, which implies increased in-transit inventory costs in terms of shippers. We formulate the problem as a nonlinear lot-sizing model and suggest a Lagrangian heuristic to solve the problem. The performance of the heuristic algorithm is evaluated using the data obtained from reliable sources. Although the problem is an operational problem, the heuristic algorithm is used to address various strategic issues facing shipping companies, including the effects of bunker prices, carbon taxes, and ship time costs on the ship speed, bunkering amount and number of bunkering ports. For this, we conduct sensitivity analyses of these factors and finally discuss study findings.

Development of a Dynamic Deformable Rubber Membrane Parapet to Cope with the Long Term Sea Level Rise and the Abnormal Waves (장기해수면 상승 및 이상파랑에 대비한 동적 가변형 고무막체 파라펫 개발)

  • Kim, Sun-Sin;Chun, In-Sik;Lee, Young-Gun;Ko, Jang-Hee;Hong, Seung-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2011
  • It's been reported that the global warming effect has invoked the ever increasing typhoon intensity and long-term sea level rise which jointly cause severe wave overtopping over breakwaters or shore dykes. A simple measure to cope with this undesirable change may be just to increase the crest height of the dykes and breakwaters. This is surely effective to prevent wave overtopping, but it also decreases the seaward visibility of coastal waterfront. In this paper, a dynamic deformable rubber membrane parapet which not only reduces wave overtopping in storm period but also secures seascapes in normal days is presented. Several optimal configurations of the parapet are proposed. Through numerical analyses using a nonlinear finite element model and hydraulic experiments, the air controlled expansion and contraction of the parapets, their behavior against wave overtopping and structural stability are investigated.