• Title/Summary/Keyword: Glass formulation

Search Result 72, Processing Time 0.025 seconds

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

Glass Formulations for Vitrification of Low- and Intermediate-level Waste

  • Kim, Cheon-Woo;Park, Jong-Kil;Ha, Jong-Hyun;Song, Myung-Jae;Lee, Nel-Son;Kong, Peter-C.;Anderson, Gary-L.
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.10
    • /
    • pp.936-942
    • /
    • 2003
  • In order to develop glass formulations for vitrifying Low-and Intermediate-Level radioactive Wastes (LILW) from nuclear power plants of Korea Hydro & Nuclear Power (KHNP) Co., Ltd., promising glass formulations were selected based on glass property model predictions for viscosity, electrical conductivity and leach resistance. Laboratory measurements were conducted to verify the model predictions. Based on the results, the models for electrical conductivity, US DOE 7-day Product Consistency Test (PCT) elemental release, and pH of PCT leachate are accurate for the LILW glass formulations. However, the model for viscosity was able to provide only qualitative results. A leachate conductivity test was conducted on several samples to estimate glass leach resistance. Test results from the leachate conductivity test were useful for comparison before PCT elemental release results were available. A glass formulation K11A meets all the KHNP glass property constraints, and use of this glass formulation on the pilot scale is recommended. Glass formulations K12A, K12B, and K12E meet nearly all of the processing constraints and may be suitable for additional testing. Based on the comparison between the measured and predicted glass properties, existing glass property models may be used to assist with the LILW glass formulation development.

Development on Glass Formulation for Aluminum Metal and Glass Fiber (유리섬유 및 알루미늄 금속 혼합물 유리조성 개발)

  • Cho, Hyun-Je;Kim, Cheon-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.247-254
    • /
    • 2012
  • Vitrification technology has been widely applied as one of effective processing methods for wastes generated in nuclear power plants. The advantage of vitrifying for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. Recently, a filter using on HVAC(Heating Ventilating & Air Conditioning System) is composed with media (glass fiber) and separator (aluminum film) has been studied the proper treatment technology for meeting the waste disposal requirement. Present paper is a feasibility study for the filter vitrification that developing of the glass compositions for filter melting and melting test for physicochemical characteristic evaluation. The aluminum metal of film type is preparing with 0.5 cm size for proper mixing with glass frit, glass fiber is also preparing with 1 cm size within crucible. The glass compositions should be developed considering molten glass are related with wastes reduction. Glass compositions obtained from developing on glass formulation are mainly composed of $SiO_2$ and $B_2O_3$ for aluminum metal. A variety of factors obtained from the glass formulation and melting test are reviewed, which is feeding rate and glass characteristics of final products such as durability for implementing the wastes disposal requirement.

Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm

  • Rahman, Md. Moshiur;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • This paper presents a generalized formulation for optimizing the design of concrete beam reinforced with glass fiber reinforced polymer bar. The optimization method is formulated to find the design variables leading to the minimum weight of concrete beam with constraints imposed based on ACI code provisions. A simple genetic algorithm is utilized to solve the optimization task. The weights of concrete and glass fiber reinforced polymer bar are included in the formulation of the objective function. The ultimate limit states and the serviceability limit states are included in formulation of constraints. The results of illustrated example demonstrate the efficiency of the proposed method to reduce the weight of beam as well as to satisfy the above requirement. The application of the optimization based on the most economical design concept have led to significant savings in the amount of the component materials to be used in comparison to classical design solutions.

Studies on the Physico-chemical Properties of Mixed Radioactive Waste Glass

  • Kim, C.W.;Choi, J.R.;Ji, P.K.;Park, J.K.;Shin, S.W.;Ha, J.H.;Song, M.J.;Hwang, T.W.;Park, S.J.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2004
  • In order to vitrify the W1 waste (ion-exchange resin(IER), zeolite, and dry active waste(DAW)) generated from Korean Nuclear Power Plants, a glass formulation development based on waste compositions and production rates was performed. A aluminoborosilicate glass, AG8W1, was formulated to vitrify the W1 waste in an induction cold crucible melter(CCM). The processability, product performance, and economics of the candidate glass were calculated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product quality of the glass such as chemical durability, phase stability, etc. was satisfactory. The vitrification process using the candidate glass was also evaluated to be operated as economically as possible.

Characteristics of Vitrification Process and Vitrified Form for Radioactive Waste (방사성폐기물 유리화 공정 및 유리고화체 특성)

  • Kim, Cheon-Woo;Kim, Ji-Yean;ChoI, Jong-Rak;Ji, Pyung-Kook;Park, Jong-Kil;Shin, Sang-Woon;Ha, Jong-Hyun;Song, Myung-Jae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.175-180
    • /
    • 2004
  • In order to vitrify the combustible dry active waste (DAW) generated from Korean Nuclear Power Plants, a glass formulation development based on waste composition was performed. A borosilicate glass, DG-2, was formulated to vitrify the DAW in an induction cold crucible melter (CCM). The processability, product performance, and volume reduction effect of the candidate glass were evaluated using a computer code and were measured experimentally in the laboratory and CCM. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. Start-up and maintaining glass melt of the candidate glass were favorable in the CCM. The product of the glass product such as chemical durability, phase stability, and density was satisfactory. The vitrification process using the candidate glass was also evaluated assuming that it was operated as economically as possible.

  • PDF

Prediction of seismic cracking capacity of glazing systems

  • O'Brien, William C. Jr.;Memari, Ali M.;Eeri, M.
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.101-132
    • /
    • 2015
  • This research formulates a closed-form equation to predict a glass panel cracking failure drift for several curtain wall and storefront systems. An evaluation of the ASCE 7-10 equation for Dclear, which is the drift corresponding to glass-to-frame contact, shows that the kinematic modeling assumed for formulation of the equation is sound. The equation proposed in this paper builds on the ASCE equation and offers a revision of that equation to predict drift corresponding to cracking failure by considering glazing characteristics such as glass type, glass panel configuration, and system type. The formulation of the proposed equation and corresponding analyses with the ASCE equation is based on compiled experimental data of twenty-two different glass systems configurations tested over the past decade. A final comparative analysis between the ASCE equation and the proposed equation shows that the latter can predict the drift corresponding to glass cracking failure more accurately.

Compositional Differences of Bojungikgi-tang and Yukmijihwang-tang Decoctions Produced by the Extractors Made of Various Materials (전탕 용기에 따른 보중익기탕과 육미지황탕 전탕액 비교 연구)

  • Kim, Jung-Hoon;Lee, Nari;Shin, Hyeun-Kyoo;Seo, Chang-Seob
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • This study compared Bojungikgi-tang (BIT) and Yukmijihwang-tang (YJT) decoctions produced using the extractors made of various materials, such as glass, earthenware, and stainless steel, for 60, 90, and 120 min. The extraction yield was measured and the amounts of marker compounds in decoctions were determined by quantitative analysis using high performance liquid chromatography. The extraction yields of BIT decoctions produced by three extractors were not significantly different, whereas the extraction yield of YJT produced using glass extractor was significantly higher than that of YJT produced using earthenware extractor after 90 min. The amounts of most marker compounds were highest in BIT decoctions produced using glass extractor. However, variations of the amounts of marker compounds were observed in YJT decoctions and the volatile compound was not easily vaporized in YJT decoction produced using earthenware extractor. This study suggests that the extractor made of various materials may affect the extraction efficiency and the contents of marker compounds, especially in the decoction produced using earthenware extractor, although the results were dependent on the characteristics of herbal formula.

Feasibility Study on the Vitrification of Concentrated Boric Acid Waste (붕산농축폐액 유리화 타당성 연구)

  • Cho, Hyun-Je;Kim, Deuk-Man;Park, Jong-Kil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.143-150
    • /
    • 2010
  • Vitrification technology has been gradually recognized as one of effective solidification methods for concentrated boric acid wastes generated in PWR. Vitrification for low- and intermediate-level radioactive wastes has a large volume reduction and good durability for the final products. A feasibility study for the vitrification of concentrated boric acid wastes has been performed with developing the pre-treatment methods of powdered wastes, glass compositions using glass formulation and demonstration test. The pre-treatment method is pelletizing the powder type for stable feeding within cold crucible melter. The glass compositions should be developed considering molten glass are related with wastes reduction. High contents of sodium and boron within borate wastes give influence to waste loading. A variety of factors obtained from the demonstration test are reviewed, which is wastes feeding rate, off-gas characteristics on stack and glass characteristics of final products such as durability for implementing the wastes disposal requirement. The aim of this paper is to present the feasibility of vitrification and review the solidification method for concentrated boric acid wastes and obtain the physicochemical characteristics of solidified glass.

Studies on the Physico-chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste (${\cdot}$저준위 방사성폐기물 유리고화체의 물리${\cdot}$화학적 특성 연구)

  • Kim, Cheon-Woo;Park, Byoung-Chul;Kim, Hyang-Mi;Kim, Tae-Wook;Choi, Kwan-Sik;Park, Jong-Kil;Shin, Sang-Woon;Song, Myung-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.839-845
    • /
    • 2001
  • In order to vitrify the Ion-Exchange Resin(IER), Dry Active Waste(DAW), and borate concentrate generated from the commercial nuclear facilities, the glass formulation study based on the their compositions was performed. Two glasses named as RG-1 and DG-1 were formulated as the candidate glasses for the vitrification of hte IER and DAW, respectively. A glass named as MG-1 was also formulated as a candidate glass for the vitrification of the mixed wastes containing the IER, DAW, and borate concentrate. The process parameters, product qualities, and economics were evaluated for the candidate glasses and confirmed experimentally for the some properties. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. the product qualities such as glass density, chemical durability, phase stability, etc. were satisfactory. In case of vitrifying the wastes using our developed glass formulation study, the volume reduction factors for the IER, DAW and mixed wastes were evaluated as 21, 89 and 75, respectively.

  • PDF