• Title/Summary/Keyword: Ginsenoside-Rg2

Search Result 558, Processing Time 0.03 seconds

Anti-wrinkle Effect by Ginsenoside Rg3 Derived from Ginseng (인삼유래 Ginsenoside Rg3에 의한 항-주름 효과)

  • 김성우;정지헌;조병기
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.221-225
    • /
    • 2004
  • The root of Panax ginseng C. A. Meyer has been used as a traditional anti-aging and anti-wrinkle agent in the Orient. However, it is still unknown which component of ginseng is effective at suppressing wrinkle formation. Recently at least twenty ginsenosides regarded as the main active ingredients of ginseng have been isolated. Among them, we examined the effect of ginsenoside Rg3 on dermal ECM metabolism to elucidate the mechanism of anti-wrinkle by ginseng. In our study, to investigate the anti-wrinkle effect of the ginsenoside Rg3, ECM component and growth factor in dennis were evaluated by ELISA assay. Ginsenoside Rg3 was found to stimulate type I procollagen and fibronectin (FN) biosynthesis in a dose-dependent manner in normal human fibroblast culture (p < 0.05, n =3), and dose-dependently enhance TGF- ${\beta}$1 level (p < 0.05, n =3). In RT-PCR analysis mRNA level of c-Jun, a member of AP-1 transcription factor, was reduced by ginsenoside Rg3 in normal human fibroblast culture. These results indicate that ginsenoside Rg3 stimulates type I collagen and FN synthesis through the changes of TGF - ${\beta}$1 and AP-1 expression in fibroblasts.

Change of Ginsenoside Composition in Ginseng Extract by Vinegar Process

  • Ko, Sung-Kwon;Lee, Kyung-Hee;Hong, Jun-Kee;Kang, Sung-An;Sohn, Uy-Dong;Im, Byung-Ok;Han, Sung-Tai;Yang, Byung-Wook;Chung, Sung-Hyun;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.509-513
    • /
    • 2005
  • The purpose of this study was to develop a new preparation process of ginseng extract using high concentrations of ginsenoside $Rg_3$, a special component in red ginseng. From when the ginseng saponin glycosides transformed into the prosapogenins chemically, they were analyzed using the HPLC method. The ginseng and ginseng extract were processed with several treatment conditions of an edible brewing vinegar. The results indicated that ginsenoside $Rg_3$ quantities increased over 4% at the pH 2-4 level of vinegar treatment. This occurred at temperatures above $R90^{\circ}C$, but not occurred at other pH and temperature condition. In addition, the ginseng and ginseng extract were processed with the twice-brewed vinegar (about 14% acidity). This produced about 1.5 times more ginsenoside $Rg_3$ than those processed with regular amounts of brewing vinegar (about 7% acidity) and persimmon vinegar (about 3% acidity). Though the white ginseng extract was processed with the brewing vinegar over four hr, there was no change for ginsenoside $Rg_3$. However, the VG8-7 was the highest amount of ginsenoside $Rg_3$ (4.71%) in the white ginseng extract, which was processed with the twice-brewed vinegar for nine hr. These results indicate that ginseng treated with vinegar had 10 times the quantity of ginsenoside $Rg_3$, compared to the amount of ginsenoside $Rg_3$ in the generally commercial red ginseng, while ginsenoside $Rg_3$ was not found in raw and white ginseng.

Isolation of 20(S)-Ginsenoside Rg3 and Rg5 from the Puffed Red Ginseng (팽화 홍삼으로부터 20(S)-Ginsenoside Rg3와 Rg5의 분리 및 구조동정)

  • An, Young-Eun;Cho, Jin-Gyeong;Baik, Nam-In;Choi, Sung-Won;Hur, Nam-Yoon;Park, Seok-Jun;Kim, Byung-Yong;Baik, Moo-Yeol
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Red ginseng tail roots (9.8 g water/100 g sample) were puffed at 7, 8, 9, and 10 $kg_{f}/cm^{2}$ using a rotational puffing gun. Puffed red ginseng was extracted with 70% ethanol, and the concentrated extract was successively partitioned with diethyl ether, n-butanol and $H_{2}O$. Two unknown ginsenosides from puffed red ginseng were found at 63 and 65 min of retention time in HPLC chromatogram suggesting that chemical structure of some ginsenosides might be altered during the puffing process. Identification of two unknown compounds was carried out using TLC, HPLC and NMR. Two major compounds were isolated from TLC. According to TLC result, compound I was expected to be the mixture of ginsenosides Rk1 and Rg5, and compound II was expected to be a 20(S)-ginsenoside $Rg_{3}$. Three compounds were isolated from n-butanol fraction through repeated silica gel and octadecyl silica gel column chromatographies. From the result of $^{1}H$- and $^{13}C$-NMR data, the chemical structures of unknown compounds were determined as ginsenoside $Rg_{5}$ and 20(S)-ginsenoside $Rg_{3}$. Unfortunately, ginsenoside $Rk_{1}$ could not be separated from ginsenoside-$Rg_{5}$ in the compound I. It was carefully reexamined using HPLC and confirmed that the last unknown compound was ginsenoside-$Rk_{1}$.

Effect of Red Ginseng and Its Representative Constituents, Ginsenosides Rg3 and Rh2, on Dextran Sulfate Sodium-induced Colitis in Mice

  • Yoo, Young-Ik;Lee, Hae-Sung;Kim, Dong-Hyun;Han, Myung-Joo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.262-266
    • /
    • 2009
  • To evaluate the anticolitic effect of red ginseng (RG, the steamed root of Panax ginseng CA. Meyer, Araliaceae), RG and its representative constituents, ginsenosides Rg3 and Rh2, were orally administered to dextran sulfate sodium (DSS)-induced colitic mice and inflammatory markers investigated. RG and its constituents, ginsenosides Rg3 and Rh2, inhibited colon shortening and myeloperoxidase activity induced by DSS. The ginsenosides Rg3 and Rh2 inhibited mRNA expression of interleukin (IL)-$1{\beta}$ as well as protein levels of IL-$1{\beta}$ and IL-6. These ginsenosides also inhibited the activation of a transcription nuclear factor (NF)-${\kappa}B$. Ginsenoside Rh2 was a more potent inhibitor than ginsenoside Rg3. The anticolitic effects of these ginsenosides were comparable with sulfasalazine.

Component analysis of cultivated ginseng, cultivated wild ginseng, and wild ginseng and the change of ginsenoside components in the process of red ginseng (인삼.산양삼.자연산 산삼의 ginsenoside 함량 분석 및 홍삼화 후의 변화 관찰)

  • Jeong, H.S.;Lim, C.S.;Cha, B.C.;Choi, S.H.;Kwon, K.R.
    • Journal of Pharmacopuncture
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2010
  • Objectives: The aim of this experiment is to provide an objective differentiation of cultivated ginseng, cultivated wild ginseng, and wild ginseng through component analysis, and to know the change of ginsenoside components in the process for making red ginseng. Methods: Comparative analysis of ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, Re, Rf, $Rg_1,\;Rg_3,\;Rh_1$ and $Rh_2$ from the cultivated ginseng 4 and 6 years, cultivated wild ginseng, and wild ginseng were conducted using High Performance Liquid Chromatography(hereafter HPLC). And the same analyses were conducted in the process of red ginseng. Results: 1. For content comparison of ginsenoside $Rb_1$, Rc, Rd, Rf, $Rg_1$ and $Rh_1$, wild ginseng showed high content, followed cultivated ginseng 4 and 6 years, cultivated wild ginseng showed low content than any other samples. 2. For content comparison of ginsenoside $Rb_2$ and Re, cultivated ginseng 4 years showed high content, followed wild ginseng and cultivated ginseng 6 years, cultivated wild ginseng showed low content than any other samples. 3. For content comparison of ginsenoside $Rg_3$, wild ginseng and cultivated wild ginseng were only showed low content. 4. For content comparison of ginsenoside $Rh_2$, cultivated wild ginseng was only showed low content. 5. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rc, Rd, $Rg_3$ and $Rh_1$ were increased, and ginsenoside Re and $Rg_1$ were decreased in cultivated wild ginseng. 6. In the process of red ginseng, ginsenoside $Rg_3$ and $Rh_1$ were increased, and ginsenoside $Rb_2$, Rc, and Re were decreased in cultivated ginseng 4 years. 7. In the process of red ginseng, ginsenoside $Rb_1,\;Rb_2$, Rf and $Rh_1$ were increased, and ginsenoside Rc and Rd were decreased in cultivated ginseng 6 years. Conclusions: Distribution of ginsenoside contents to the cultivated ginseng, cultivated wild ginseng, and wild ginseng was similar and was not showed special characteristics between samples. And the change of ginsenoside to the process of red ginseng, cultivated ginseng and cultivated wild ginseng were showed different aspect.

Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice

  • Zhang, Kai;Liu, Ying;Wang, Cuizhu;Li, Jiannan;Xiong, Lingxin;Wang, Zhenzhou;Liu, Jinping;Li, Pingya
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.550-561
    • /
    • 2019
  • Background: Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods: Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from $Schr{\ddot{o}}dinger$ was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results: 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion: 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Ginsenoside Contents of Korean White Ginseng and Taegeuk Ginseng with Various Sizes and Cultivation Years (국내산 백삼과 태극삼의 크기 및 연근별 인삼사포닌 함량)

  • Hwang, Jin-Bong;Ha, Jae-Ho;Hawer, Woo-Derck;NahmGung, Bae;Lee, Boo-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.508-512
    • /
    • 2005
  • Ginsenoside composition and contents of Korean white and taegeuk ginsengs were investigated to establish Chinese pharmaceutical standards for import of Korean ginseng. Total ginsenoside-Rg1, Re, and Rb1 of all Korean white and taegeuk ginseng samples were higher than guideline of Chinese standard of 0.4%, $Mean{\pm}S.D.$ values of Rg1, Re, and Rb1 of Korean white ginseng were $232.7{\pm}110.2,\;235.3{\pm}101.5,\;and\;280.1{\pm}121.3\;mg%$, respectively. Ratio of Rg1 to Re of Korean white ginseng was 1.02. $Mean{\pm}S.D.$ values of Rg1, Re, and Rb1 of Korean taeguek ginseng were $262.1{\pm}127.2,\;213.1{\pm}55.7,\;and\;279.9{\pm}92.1\;mg%$, respectively.

A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease

  • Li, Naijing;Liu, Ying;Li, Wei;Zhou, Ling;Li, Qing;Wang, Xueqing;He, Ping
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Background: Alzheimer's disease (AD) is a progressive brain disease, for which there is no effective drug therapy at present. Ginsenoside Rg1 (G-Rg1) and G-Rg2 have been reported to alleviate memory deterioration. However, the mechanism of their anti-AD effect has not yet been clearly elucidated. Methods: Ultra performance liquid chromatography tandem MS (UPLC/MS)-based metabolomics was used to identify metabolites that are differentially expressed in the brains of AD mice with or without ginsenoside treatment. The cognitive function of mice and pathological changes in the brain were also assessed using the Morris water maze (MWM) and immunohistochemistry, respectively. Results: The impaired cognitive function and increased hippocampal $A{\beta}$ deposition in AD mice were ameliorated by G-Rg1 and G-Rg2. In addition, a total of 11 potential biomarkers that are associated with the metabolism of lysophosphatidylcholines (LPCs), hypoxanthine, and sphingolipids were identified in the brains of AD mice and their levels were partly restored after treatment with G-Rg1 and G-Rg2. G-Rg1 and G-Rg2 treatment influenced the levels of hypoxanthine, dihydrosphingosine, hexadecasphinganine, LPC C 16:0, and LPC C 18:0 in AD mice. Additionally, G-Rg1 treatment also influenced the levels of phytosphingosine, LPC C 13:0, LPC C 15:0, LPC C 18:1, and LPC C 18:3 in AD mice. Conclusion: These results indicate that the improvements in cognitive function and morphological changes produced by G-Rg1 and G-Rg2 treatment are caused by regulation of related brain metabolic pathways. This will extend our understanding of the mechanisms involved in the effects of G-Rg1 and G-Rg2 on AD.