Effect of Red Ginseng and Its Representative Constituents, Ginsenosides Rg3 and Rh2, on Dextran Sulfate Sodium-induced Colitis in Mice

  • Yoo, Young-Ik (Department of Food and Nutrition, Kyung Hee University) ;
  • Lee, Hae-Sung (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Han, Myung-Joo (Department of Food and Nutrition, Kyung Hee University)
  • Published : 2009.02.28

Abstract

To evaluate the anticolitic effect of red ginseng (RG, the steamed root of Panax ginseng CA. Meyer, Araliaceae), RG and its representative constituents, ginsenosides Rg3 and Rh2, were orally administered to dextran sulfate sodium (DSS)-induced colitic mice and inflammatory markers investigated. RG and its constituents, ginsenosides Rg3 and Rh2, inhibited colon shortening and myeloperoxidase activity induced by DSS. The ginsenosides Rg3 and Rh2 inhibited mRNA expression of interleukin (IL)-$1{\beta}$ as well as protein levels of IL-$1{\beta}$ and IL-6. These ginsenosides also inhibited the activation of a transcription nuclear factor (NF)-${\kappa}B$. Ginsenoside Rh2 was a more potent inhibitor than ginsenoside Rg3. The anticolitic effects of these ginsenosides were comparable with sulfasalazine.

Keywords

References

  1. Tanaka N, Tanaka O, Shibata S. Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng;Stereochemistry of sapogenin of ginsenoside Rb1, Rb2, and Rc. Chem. Pharm. Bull. 20: 1212-1216 (1972) https://doi.org/10.1248/cpb.20.1212
  2. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies of crude drugs (1). Constituents of ginseng radix rubra. Yakugaku Zasshi 103: 612-622 (1983) https://doi.org/10.1248/yakushi1947.103.6_612
  3. Kown SW, Han SB, Park IH, Kim lM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A 921: 335-339 (2001) https://doi.org/10.1016/S0021-9673(01)00869-X
  4. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63: 1702-1704 (2000) https://doi.org/10.1021/np990152b
  5. Han, ST, Shin CG, Yang BW, Hahm YT, Sohn UD, Im BI, Cho SH, Lee BY, Ko SK. Analysis of ginsenoside composition of woodsgrown ginseng roots. Food Sci. Biotechnol. 16: 281-284 (2007)
  6. Yoon YJ, Kim NY, Rhee YK, Han MJ. Quality characteristics and biological activities of traditionally fermented ginseng wine. Food Sci. Biotechnol. 16: 198-204 (2007)
  7. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. BioI. Pharm. Bull. 25: 58-63 (2002) https://doi.org/10.1248/bpb.25.58
  8. Wakabayshi C, Murakami K, Hasegawa H, Murata J, Saiki I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem. Bioph. Res. Co. 246: 725-730 (1998) https://doi.org/10.1006/bbrc.1998.8690
  9. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. BioI. Pharm. Bull. 26: 1581-1584 (2003) https://doi.org/10.1248/bpb.26.1581
  10. Choo MK, Park EK, Han MI, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med. 69: 518-522 (2003) https://doi.org/10.1055/s-2003-40653
  11. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rhl possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Imm. 133: 113-120 (2004) https://doi.org/10.1159/000076383
  12. Rogier G. Update in inflammatory bowel disease pathogenesis. Curr. Opin. Gastroen. 20: 311-317 (2004) https://doi.org/10.1097/00001574-200407000-00003
  13. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology 115: 182-205 (1998) https://doi.org/10.1016/S0016-5085(98)70381-6
  14. Issacs KL, Sarter RB, Haskill S. Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology 103: 1587-1595 (1992) https://doi.org/10.1016/0016-5085(92)91182-4
  15. Stevens C, Walz G, Singaram C, Lipman ML, Zanker B, Muggia A, Antonioli D, Peppercorn MA, Strom TB. Tumor necrosis factoralpha, interleukin-1 beta, and interleukin-6 expression in inflammatory bowel disease. Digest Dis. Sci. 37: 818-826 (1992) https://doi.org/10.1007/BF01300378
  16. Peppercom MA. Sulfasalazine. Pharmacology, clinical use, toxicity, and related new drug development. Ann. Intern. Med. 101: 377-386 (1984) https://doi.org/10.7326/0003-4819-101-3-377
  17. Jiang XL, Cui HF. Different therapy for different types of ulcerative colitis in China. World J. Gastroentero. 10: 1513-1520 (2004) https://doi.org/10.3748/wjg.v10.i10.1513
  18. Fukuta M, Chen A, Kepper A, Krishnareddy D, Vamadevan AS, Thomas LS, Xu R, Inoue H, Arditi M, Dannenber AJ, Abreu M. Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131:862-877 (2006) https://doi.org/10.1053/j.gastro.2006.06.017
  19. Mullane KM, Kraemer R, Smith B. Myeloperoxidase activity as a quantitative assessment of neutrophil infiltration into ischemic myocardium. J. Pharmacol. Method 14: 157-167 (1985) https://doi.org/10.1016/0160-5402(85)90029-4
  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  21. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int. Immunopharmacol. 5: 1183-1191 (2005) https://doi.org/10.1016/j.intimp.2005.02.016
  22. Mastuda H, Morikawa T, Ueda K, Managi H, Yoshikawa M. Structural requirement of flavonoids for inhibition of antigeninduced degranulation, TNF-$\alpha$ and IL-4 production from RNL-2H3 cells. Bioorgan. Med. Chem. 10: 2123-2128 (2002)
  23. Furumoto Y, Nunomura S, Terada T, Rivera J, Ra C. The FcepsilonRIbeta immunoreceptor tyrosine-based activation motif exerts inhibitory control on MAPK and IkappaB kinase phosphorylation and mast cell cytokine production. J. BioI. Chem. 279: 49177-49187 (2004) https://doi.org/10.1074/jbc.M404730200
  24. Rath HC, Schultz M, Freitag R, Dieleman LA, Li F, Linde HJ, Scholmerich J, Sartor RB. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect. Immun. 69: 2277-2285 (2001) https://doi.org/10.1128/IAI.69.4.2277-2285.2001
  25. Jung HC, Eckmann I, Yang SK, Panja A, Fierer J, Morzycka-Worblewska E, Kagnoff MF. A distinct array of proinflammatory cytokine is expressed in human colon epithelia cells in response to bacterial invasion. J. Clin. Invest. 95: 55-65 (1995) https://doi.org/10.1172/JCI117676
  26. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewk K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease. Clin. Exp. Immunol. 102: 448-455 (1995) https://doi.org/10.1111/j.1365-2249.1995.tb03836.x
  27. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F. Toll-like receptor-4 mediates lipolysaccharide-induced signal transduction. J. BioI. Chem. 274: 10689-10692 (1999) https://doi.org/10.1074/jbc.274.16.10689
  28. Ingalls RR, Heine H, Lien E, Yoshimura A, Golenbock D. Lipolysaccharide recognition, CD14, and lipolysaccharide receptors. Infect. Dis. Clin. N. Am. 13: 341-353 (1999) https://doi.org/10.1016/S0891-5520(05)70078-7
  29. Cario E, Pldolsky DK. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68: 7010-7017 (2000) https://doi.org/10.1128/IAI.68.12.7010-7017.2000
  30. Cario E. Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and NOD2. Gut 54: 1182-1193 (2005) https://doi.org/10.1136/gut.2004.062794
  31. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu. Rev. Immunol. 21: 335-376 (2003) https://doi.org/10.1146/annurev.immunol.21.120601.141126
  32. Reinnecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, Raedler A. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn's disease. Clin. Exp. Immunol. 94: 174-181 (1993) https://doi.org/10.1111/j.1365-2249.1993.tb05997.x
  33. Schreiber S, Nikolaus S, Hampe J, Hamling J, Koop I, Groessner B, Lochs H, Raedler A. Tumor necrosis factor a and interleukin 1b in relapse of Crohn's disease. Lancet 353: 459-461 (1999) https://doi.org/10.1016/S0140-6736(98)03339-X
  34. Reed KL, Fruin AB, Gower AC, Gonzales KD, Stucchl AF, Andry CD O'Brien M, Becker JM. NF-kappaB activation precedes increases in mRNA encoding neurqkinin-1 receptor, proinflammatory cytokines, and adhesion molecules in dextran sulfate sodiuminduced colitis in rats. Digest Dis. Sci. 50: 2366-2378 (2005) https://doi.org/10.1007/s10620-005-3066-y
  35. Bae EA, Han MJ, Shin YW, Kim DH. Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. BioI. Pharm. Bull. 29: 1862-1867 (2006) https://doi.org/10.1248/bpb.29.1862
  36. Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells. Biochem. Pharmacol. 74: 1642-1651 (2007) https://doi.org/10.1016/j.bcp.2007.08.015