• Title/Summary/Keyword: Gibbs sampling

Search Result 168, Processing Time 0.031 seconds

Bayesian Inference for Modified Jelinski-Moranda Model by using Gibbs Sampling (깁스 샘플링을 이용한 변형된 Jelinski-Moranda 모형에 대한 베이지안 추론)

  • 최기헌;주정애
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • Jelinski-Moranda model and modified Jelinski-Moranda model in software reliability are studied and we consider maximum likelihood estimator and Bayes estimates of the number of faults and the fault-detection rate per fault. A gibbs sampling approach is employed to compute the Bayes estimates, future survival function is examined. Model selection based on prequential likelihood of the conditional predictive ordinates. A numerical example with simulated data set is given.

  • PDF

Some Process Capability Indices Using Gibbs Sampling (공정능력자수에 대한 깁스샘플링 추정)

  • 김평구;김희철
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.88-98
    • /
    • 1998
  • Process capability indices are used to determine whether a production process is capable of producing items within a specified tolerance. Using conditional distribution, we study some process capability indices ${\hat{C}}_{Gp}$, ${\hat{C}}_{Gpk}$, ${\hat{C}}_{Gpm}$ under conjugate prior distribution. We consider some process capability indices with Gibbs sampling method. Also, we examine some small sample properties related to these estimaters by some simulations.

  • PDF

Bayesian Approaches to Zero Inflated Poisson Model (영 과잉 포아송 모형에 대한 베이지안 방법 연구)

  • Lee, Ji-Ho;Choi, Tae-Ryon;Wo, Yoon-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.677-693
    • /
    • 2011
  • In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

Bayesian analysis of cumulative logit models using the Monte Carlo Gibbs sampling (몬테칼로깁스표본기법을 이용한 누적로짓 모형의 베이지안 분석)

  • 오만숙
    • The Korean Journal of Applied Statistics
    • /
    • v.10 no.1
    • /
    • pp.151-161
    • /
    • 1997
  • An easy Monte Carlo Gibbs sampling approach is suggested for Bayesian analysis of cumulative logit models for ordinal polytomous data. Because in the cumulative logit model the posterior conditional distributions of parameters are not given in convenient forms for random sample generation, appropriate latent variables are introduced into the model so that in the new model all the conditional distributions are given in very convenient forms for implementation of the Gibbs sampler.

  • PDF

Bayesian Analysis of Multivariate Threshold Animal Models Using Gibbs Sampling

  • Lee, Seung-Chun;Lee, Deukhwan
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.177-198
    • /
    • 2002
  • The estimation of variance components or variance ratios in linear model is an important issue in plant or animal breeding fields, and various estimation methods have been devised to estimate variance components or variance ratios. However, many traits of economic importance in those fields are observed as dichotomous or polychotomous outcomes. The usual estimation methods might not be appropriate for these cases. Recently threshold linear model is considered as an important tool to analyze discrete traits specially in animal breeding field. In this note, we consider a hierarchical Bayesian method for the threshold animal model. Gibbs sampler for making full Bayesian inferences about random effects as well as fixed effects is described to analyze jointly discrete traits and continuous traits. Numerical example of the model with two discrete ordered categorical traits, calving ease of calves from born by heifer and calving ease of calf from born by cow, and one normally distributed trait, birth weight, is provided.

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

FUNCTIONAL CENTRAL LIMIT THEOREMS FOR THE GIBBS SAMPLER

  • Lee, Oe-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.3
    • /
    • pp.627-633
    • /
    • 1999
  • Let the given distribution $\pi$ have a log-concave density which is proportional to exp(-V(x)) on $R^d$. We consider a Markov chain induced by the method Gibbs sampling having $\pi$ as its in-variant distribution and prove geometric ergodicity and the functional central limit theorem for the process.

  • PDF

A Novel Simulation Architecture of Configurational-Bias Gibbs Ensemble Monte Carlo for the Conformation of Polyelectrolytes Partitioned in Confined Spaces

  • Chun, Myung-Suk
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.393-397
    • /
    • 2003
  • By applying a configurational-bias Gibbs ensemble Monte Carlo algorithm, priority simulation results regarding the conformation of non-dilute polyelectrolytes in solvents are obtained. Solutions of freely-jointed chains are considered, and a new method termed strandwise configurational-bias sampling is developed so as to effectively overcome a difficulty on the transfer of polymer chains. The structure factors of polyelectrolytes in the bulk as well as in the confined space are estimated with variations of the polymer charge density.

A Comparison study of Hybrid Monte Carlo Algorithm

  • 황진수;전성해;이찬범
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.135-140
    • /
    • 2000
  • 베이지안 신경망 모형(Bayesian Neural Networks Models)에서 주어진 입력값(input)은 블랙 박스(Black-Box)와 같은 신경망 구조의 각 층(layer)을 거쳐서 출력값(output)으로 계산된다. 새로운 입력 데이터에 대한 예측값은 사후분포(posterior distribution)의 기대값(mean)에 의해 계산된다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 가능도함수(likelihood functions)를 통해 계산되어진 사후분포는 매우 복잡한 구조를 갖게 됨으로서 기대값의 적분계산에 대한 어려움이 발생한다. 이때 확률적 추정에 의한 근사 방법인 몬테칼로 적분을 이용한다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 우수한 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘과 기존에 많이 사용되고 있는 Gibbs sampling, Metropolis algorithm, 그리고 Slice Sampling등의 몬테칼로 방법들을 비교한다.

  • PDF

Bayesian Multiple Change-Point for Small Data (소량자료를 위한 베이지안 다중 변환점 모형)

  • Cheon, Soo-Young;Yu, Wenxing
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2012
  • Bayesian methods have been recently used to identify multiple change-points. However, the studies for small data are limited. This paper suggests the Bayesian noncentral t distribution change-point model for small data, and applies the Metropolis-Hastings-within-Gibbs Sampling algorithm to the proposed model. Numerical results of simulation and real data show the performance of the new model in terms of the quality of the resulting estimation of the numbers and positions of change-points for small data.