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Bayesian Analysis of Multivariate Threshold Animal
Models Using Gibbs Sampling’
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ABSTRACT

The estimation of variance components or variance ratios in linear model
is an important issue in plant or animal breeding fields, and various estima-
tion methods have been devised to estimate variance components or variance
ratios. However, many traits of economic importance in those fields are ob-
served as dichotomous or polychotomous outcomes. The usual estimation
methods might not be appropriate for these cases. Recently threshold linear
model is considered as an important tool to analyze discrete traits specially
in animal breeding field.

In this note, we consider a hierarchical Bayesian method for the threshold
animal model. Gibbs sampler for making full Bayesian inferences about
random effects as well as fixed effects is described to analyze jointly discrete
traits and continuous traits. Numerical example of the model with two
discrete ordered categorical traits, calving ease of calves from born by heifer
and calving ease of calf from born by cow, and one normally distributed
trait, birth weight, is provided.

Keywords. Threshold animal model, liability, hierarchical Bayes method, Gibbs
sampling.
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1. Introduction

In an analysis of mixed effects linear model, one objective may be inference
about the variance components or the ratio of variance components. For instance,
in the context of animal breeding, variance components or ratio of variance com-
ponents often represent the heritability of some trait and, under certain assump-
tions, heritability can be expressed as a function of them. However, dependent
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variables in a linear model are often measured in discrete scale, and hence the
usual variance component estimation methods under normality assumption is
not appropriate. For example, in American Gelbvieh Association, calving ease
is scored as 1 (natural calving, no assistance), 2 (easy pull), 3 (hard pull) or 4
(mechanical force or Cesarean). Because the calving ease is an important trait
to determine the economic loss for heifer and cow as well as calf in reproduction,
various methodologies have been devised to analysis calving ease score.

One of the appealing methodology for genetic analysis of ordered categorical
data is based on the threshold liability concept, which was originated by Wright
(1934) in studies of the number of digits in guinea pigs. In the threshold model,
it is postulated that there exists a latent or underlying variable (liability) which
has a continuous distribution. A set of thresholds divides this continuous variable
into the discrete scores. Thus the observed value of categorical variable is a
representation of the liability falling between the thresholds. Applications of this
model can be found in Gianola (1982), Foulley et al. (1987), Wang et al. (1994),
Sorensen et al. (1994), Jensen et al. (1994) and Berger et al. (1995).

With the advent of inferential algorithms based simulations, Bayesian meth-
ods are being increasingly applied to genetic inference in animal breeding. This
is partly due to the fact that the complex analytic solutions of Bayesian method
are now feasible with the help of the inferential algorithms. The most popular
family of such algorithm is Markov Chain Monte Carlo (MCMC) including Gibbs
sampling (Geman and Geman, 1984; Gelfand et al., 1990). On the other hand
certain genetic inference requires a super population model or Bayes model in the
sense the number of parameters to be estimated is greater than or equal to the
number of observations, which often arises in animal breeding, and is referred to
as the ‘animal model’ (Quass et al., 1980).

Gianola and Foulley (1983) described Bayesian model of single trait thresh-
olds model assuming known genetic variance. Foulley et al. (1983) developed a
method to deal with a binary trait and two continuous traits. This result was
generalized to the situation of one multiple ordered categorical trait and several
continuous traits. Sorensen et al. (1995) published the Bayesian analysis of uni-
variate thresholds model via Gibbs sampling. This result further extended by
Wang et al. (1997) to analysis one multiple ordered categorical trait and one
continuous trait. However, we noted that the number of traits does not play
much roles in analytic models as long as the discrete traits have multiple ordered
categories. In this note we will describe a general hierarchical Bayes threshold
animal model via Gibbs sampling.
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The main purpose of this paper is to analysis the American Gelbvieh Associa-
tion’s calving ease data. The edited data is consist of 322,956 records from calves
born from 1981 to 2000. 3 traits, one continuous traits, birth weight (BWT),
and two ordered categorial traits, calving ease from born by heifer (CEH) and
calving ease from born by cow (CEC), are being analyzed by calf’s sex and age
of dam group, which are assumed to be fixed effects, and herd-year-season eflect,
direct and maternal additive genetic effects, which are considered as random ef-
fects. In particular the direct and the maternal genetic effects are considered to
be correlated random effects. Thus the model is consist of various types of effect
and it might be useful for further applications in animal breeding field to set
up a general methodology for this model because the methodology can be easily
modified to other threshold animal models.

2. Model

Let y1,y2,...,y% be n x 1 vectors of continuous or ordered categorical ob-
servations. A typical member of y; will be denoted by Y;;. We assume that the
first m(> 1) traits, y1,...,¥m, are multiple ordered categorical observations and
are the expression of underlying continuous random vectors Uy, ..., U, respec-
tively with unknown threshold values t1,...,t,, where t; = (t;1,%i2,. -, tic—1)
satisfying —oo = tj0 < ;) < tj2 < -+ < tijc—1 < tic =oofort=1,...,m. That
is, if we denote the j-th element of U; as Uj;, then Y;; is the value recorded by

Yij =4, ifty1< Uij < tie (2.1)

fori=1,...,mand ¢ =1,2,...,C. The remaning k—m traits, Y,+1,.-.,Yk, are
assumed to be continuous observations. In what follows, we will use (ymi1,.--,
vx) and. (Upy41, - - -, Ug) interchangeably for notational convenience.

In analysis of calving ease score, some of Y;;’s can be missing. For instance,
CEH and CEC can not be observed simultaneously because of the nature of the
traits. If CEH is observable, then CEC must be a missing value, and vice versa.
Thus we should allow some missing values in the observations. The observed
random vectors will be denoted by y?,i =1,2,... k.

Consider the following linear model for calving ease data :

U, =XiB; +Zphi + Zygvy, + L, + €, fori=1,...,k, (2.2)

where 3; is the fixed effect associated with intercept, sex and age of dam, h; is
the random herd-year-season effect, v4, is the direct additive genetic effect, and
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Vm; is the maternal genetic effect. It is assumed that X;,Z,,Z,; and Z,, are
known matrices with dimension n by d;,dy,d, and dn,(= dy), respectively, and
X; has full column rank. Let W; = (X;,Zp, Z4, Zr), 0; = (B, h} vd ,V ) for
i=1,2,...,kand 6 = (6),...,0}). Then a hierarchical Bayes model for (2.2)
might be set up as :

(I) Conditional on 8 and R

U, w0,
U=]:|~N |, ReL |,
Uy W6
where R is the k x k variance-covariance matrix of (Uyj,...,Us;),j =

1,2,...,n
(II) @ and R have a certain joint prior distribution proper or improper.

In what follow we will use a minus subscript to delete an appropriate elements
from a matrix or a vector. For example, U_; will denote the vector U with U;
deleted. Similarly and U_;; denotes U with U;; deleted. We also denote B;.9; and
B,.22 as the lower-left (p — 1) x 1 and lower-right (p —1) X (p — 1) of a partitioned
matrix L;BL; where B is a p X p symmetric matrix and L; is a p X p identity
matrix with the ¢-th column being moved to the first column. For example,

T2 {721 T23 T24 -+ T2k
T12 (711 713 Ti4 - Tik /
"
LoRLy = | 732|731 733 T34 -+ T3 | = 22 221 |
: Roo1 Roa
Tk2 [Tkl Tk3 Tk4 - Tkk

Then under model (I), it is easy to check that, given U_;;,0 and R, the condi-
tional density of Uj; is given by :

f(uiilU-i;,0,R) = ¢ (%ﬂ) : (2:3)

where ¢(-) is the density function of a standard normal distribution, and

Ulj - Wllj01
U2' —w ~02
/ -1 J 2j
Mij = Wi;0; + Rig Ry, : )
Ukj - W;cjek

2 / —1
o;. =14 — R R 5oRi01,
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with w;; denoting the j-th row of W;.

Consider the conditional distribution of U;; given 0, R, t,U_;; and y° where
vy = (y{,...,y%). Suppose Y;; is missing. It is clear that given U_;;, U;; is
independent of y° and the density is given by (2.3). Suppose now Y;; € y°. If y;
is an order categorical trait, then

Pr(Yij =€|U_;,0,R,t;] = Prlti—1 < Ui <t | U_5,0,R, t;]

_ % (tié —ﬂij) _ % (tuz—1 “nij) 7
a;. ;.

where ®(-) is the distribution function of a standard normal distribution. Thus
the conditional distribution of U;;, given 8,R,t;,U_;; and y?, is a truncated
normal with density

fluij|Yij =6, U_i5,0, R, t) = ——— 4)(%;&) —— 1(uij € (tie—1,tiel),
@ (M) - o (M)

where 1(-) is an indicator function. On the other hand if y; is a continuous trait,
then U;;|0, R, t, U_;;, y° have a degenerating distribution at Y;; because y; = U;.

Theorem 2.1. Let ¢ and & be the density and the distribution function of a
standard normal distribution. Then under model (I), the conditional density or
conditional probability mass function of U;; given U_;;,8, R, t,y° can be obtained
according to cases, (1) Yi; € y°, (2) Yi; € y° and the i-th trait is continuous, and
(3) Yi; € y°, i-th trait is ordered categorical and Y;; = £, and is given by

¢ (—J—M U—zm) case (1)
f(ul]lU—lja 0a Ra tayo) = 1 (UU = Y;J) case (2)
b “iz‘a—'ﬂiz'

Q(‘if;_"ij)_q:(til-l‘"ij) 1(ui; € (tie—1,tie)) case (3).

i .

Theorem 2.1 provides the full posterior distribution of U to implement the
Gibbs sampler. Next consider the prior distributions of parameters. As we men-
tioned before B8 = (BY,...,B;)" is a fixed effect while h = (h{,...,h})" and

! !

myr - Vg ) are random. The traditional model assump-

V= (Vg Vg,V
tions can be achieved in Bayesian model by putting the prior distributions ap-

propriately. We consider the following prior distributions :

1. f(B) x constant.
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2. f(h|Q) ~ N(0,Q ® I) where Q is k x k variance-covariance matrix of
(hij, hajy -y hij).

3. f(v|G) ~ N(0,G ® A) where G is 2k x 2k variance-covariance matrix
of (vdl},...,vdkj,vmlj yene ,vmkj) and A is a known matrix determined by
genetic relationship.

Note that the prior distributions belong to a conjugate family or a nonin-
formative prior. Because Q and G together with R are unknown, we rely on
the hierarchical Bayes procedure and put noninformative Jeffrey priors for those
variance-covariance matrices.

4. f(R) o |R|7H/2.

5. £(Q) o< |Q|7*/2.
6. f(G) x |G|7*.

Other noninformative priors for the variance-covariance might be possible, see,
for example, Wang et al. (1997).

For the prior distribution of t, we refer to Sorensen et al. (1995). Because
the thresholds are ordered values, a reasonable noninformative prior for thresh-
olds might be the one suggested by Sorensen et al., which is the distribution
of order statistics from uniform(¢min, tmax). However, as many authors pointed
out, there is an identifiability problem. Because the location parameter and the
scale parameter of underlying variable are arbitrary, one must set the values of
the parameters or two constrains should be specified. Usually one threshold and
error variance of underlying variable are set to 0 and 1, respectively (Harville
and Mee, 1984). However, other parameterization is also possible. For example,
we might set two thresholds values. We will follow the latter because it allows
easy specification of the prior distribution for R as given in 4. Although the two
parameterizations do not yield the same posterior distributions, the equivalence
of two parameterizations were illustrated by Sorensen et al. (1995).

Setting t1; = --- =ty = 0 and t19 = - -+ = t;9 = 1, noninformative priors
for the thresholds are the distributions of order statistics from uniform(1, tyax)
and are given by

C;—3
7. f(tz) = (Cz — 3)! ( 1__1) l(ti e 7:) where 7; = {(til,tig, e atiCi—l) |

tmax

1 =0<tp=1<tis<- - <tic-1 <tmax}, fori=1,...,m.
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3. Gibbs Sampler

The Gibbs sampler consists of a set of fully conditional posterior distributions
of unknown parameters in the model. Since the posterior distributions can be
obtained from joint posterior distribution of parameters, we start from the joint
posterior distribution.

Bayes theorem gives joint posterior distribution of parameters :

f(6,R,Q,G,t,Uly°) x f(U,y°|6,R,Q,G,t)f(6,R, Q, G, t)
= f(¥°|U,t)f(U]6,R)f(B)f(h|Q)f(Q) (3.1)
x f(VIG)f(G)f(R)f(t).
Among the 9 terms in (3.1), the second and the third terms are the only ones

that are functions of 8. Thus the posterior distribution of 3 is proportional to
the product of these two conditional distributions. Then

f(Bil6-5,R,Q,G,t,U,y°) x f(U|0,R)f(B) x f(Us|U_;, 6, R).

Here 6_g, represents the 8 with 3, deleted. Note that U;|U_;,8,R has a multi-
variate normal distribution with mean X;3; + Mg, and variance 021, where

Mﬁi = Zhhi + ZdVdi + vami + gii

U1 — W101

& =< (R§-21R;212) ® In) :
U, — W0,

—1

forz=1,...,%k. Hence we have

f(ﬂi(e—ﬂ,'a Ra Qa Ga ta Ua yO)

1
5.2 (U, - Xi;B; — Mg,) (U; = X8, — Mﬂi)l]

1
[ 1

o« oxp 51 (BIXIXi8, - 281X, (U~ M3} |
L 1

1
203

X exp

{B; — (XIX) 71X} (U; — Mg,)} XiX;

X exp|—

x {B; — (X/X;)"' X} (U; — Mﬂi)}}-



184 Seung-Chun Lee and Deukhwan Lee

This shows that, under model (I) and (II), the full posterior distribution of
B, is given by :

Bil0_5,Q,G,t,U,y° ~ N ((X|X;)™'X} (U; — Mg,),02(XiX,)7).

As shown in Wang et al. (1994), the scalar form of the Gibbs sampler for the
fixed effect also can be obtainable. Let 3;; be the j-th element of 3; and B, _;
be the B; with the element §;; deleted. x;; and X; _; represent the j-th column
of X, and X; itself with the j-th column deleted. Then

f(ﬂljle—ﬂ” R, Q,G,t,U, yo)

B!

o exp | =o—s { (Z ﬁuxé,e) (Z ,Biéxi,é) -2 (Z ﬂiéx;,e> (U; - M,BJH
5 z I3 V4 £
1

X exp | =55 {Bxi jxij — 2Bi5%; 5 (Us — Xi—jBi —; — Mp,) }]

[ ! . .
_ XX

X exp 203

- 2
{Bij — (i yxi ) 7'xi; (Ui — X4 i — Mg,) } } ,
and we have following result.

Lemma 3.1. Under model (I) and (II), the full posterior distribution of B;;,
i=1,...,k;5=1,2,...,d is given by :

ﬂijle—ﬁij 3 Ru Q7 G7 t7 U’ y
~ N (x5 5%0) 1% (Ui = Xi By 5 — Mg, ) s op (%) i) ™) -

Next consider the posterior distribution of herd-year-season effects h. As
before the posterior distribution is proportional to the product of f(h|Q) and
f(U]8,R) because only the two terms are the functions of h. Hence

f(hi|e—h,‘aR7 Q, Guta U,yo) S8 f(h|Q)f(U|6’R)
o f(hilh-;, Q) f(U;|U_;, 0, R).

Let My, = XiB,+2qva, + ZmVim,+&;:, 0. = qii—Q}.91 Qs 2,Qi21 and Ay, = 07 /0?
for 2 = 1,...,k. Since h;|h_;,Q is a multivariate normal random vector with
mean pp = ((Q;-21Q;212) ® I)h_i and variance 0,2:1,1, and
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f(hi|0—hi: R7 Q7 Gatvuayo)

1
ocexp[ o7 (B = ) (hy — ) 22{h’ZhZhh — 2h!Z} (U; - Mh)}}

!
PR I + )‘h VA Zh) (l“'hi + )‘hi Z;z (Ui - Mhl))}

X exp 20
h;

X exp l: h’ I+ A, thh) h; — 2h§ (”hi + AhiZ;L (U; — Mhz))}:l

2

x (14 An,Z4Zn) {hi ~ (T M0 ZhZn) ™" (o, + M Z (Ui — M) }] )

we see that the full posterior distribution of h; is

hile—hiaRanth:Uayo ~
N (T4 M Z3Zn) ™" (i, + M2 (Ui = M) 07, (T+ 2,23 Zn) ).

Similarly the scalar form of the posterior distribution of h;; is obtainable as follow:

Lemma 3.2. Under model (I) and (II), the full posterior distribution of h;j,i =
1,2,...,k;5=12,...,dy is given by :

hijle—hijaRa Qa G, t, Ua yo ~

2
- Th,
0 (0 ) (o 0 (0 2= 300
1 i J
where zj,; is the j-th column of Zy, and Zy,_; represents Zy, with the j-th column
deleted.

The posterior distributions of the direct and the maternal genetic effects can
be obtained similarly. The posterior distribution of v is proportional to the
product of f(U|,R) and f(v|G). Let v4, = vi,vq4, = V2,...,Vy, = Vg. For
notational convenience, we use both type of subscripts for genetic effect.

Let v = (v{,...,v}.)". The conditional distribution of v; given v_; and G
is a multivariate normal with mean V; = ((G!, G;,,) ® I)v_; and variance
covariance matrix o2 A where a =gi — Gl o G;212Gi.21 fori=1,2,...,2k. We
also will use the both type of subscrlpts for V and o2. For example V; and 031



186 Seung-Chun Lee and Deukhwan Lee

imply V;, and agdl, and so on. Let My, = X;8; + Zph; + Zpvm, + &5, My, =

XiB; + Zphi + Zyvg, + &; and A, = agc./af, for:=1,2,...,k and ¢ = d,m.
Then we have

f(vC,‘ |0—’Uci bl R’ Q’ G7 t’ U) yO)

1
X exp {— —203 _{V’ci Z.Z.v, — 2V’c,~ Z.(U; — M., )}
1 _ _
— E{V;A lvci - 2V£1A 1VC,’}]

1
o exp [— 52 {V'Ci()\vCi Z.Z.+ A v,
_ov, (/\ Z(Us — M,,) + A—lvc,) H
1 e _
o exp ["F {Ve; = (Mo, ZeZe+ A1) (A, Ze(Ui = M) + A We) ¥
’Uci

(Ave, ZoZe + A7) {ve, — (Mo, Z0Zc + A7) M, Z0(U; — M)

+ ATV} -

The posterior distribution of genetic effect is a multivariate normal with mean
(Mg, ZeZe + A-H)~1 (A, Ze(Ui = M) + A1V, and variance-covariance matrix
o5 (M, ZtZ. + A71)"1. Since

Ve;

05, (Mg, ZeZe + A71) TN = A — Ny AZL(T+ Ay ZAZ)) ' ZA = Ze(N,,),

Ve,
(Avci Z,CZC + A—l)—l()‘vci ZIC(UZ - MCi) + A—lvci)
=V + )‘vciAZ,c(I + ’\vc,- ZcAZIc)_l(Ui - M, -2 V,,),

we could alternatively write

Ve, le—vci 'R, Q,G,t,U,y°
~ N (Ve + Moo, AZ(T+ A, Z.AZL) ™ (U — Mo, — ZeVe,), Be(Me,,)) - (3.2)
In a calving ease model, the genetic effects usually has very many levels. This

is one of the reason we should rely on the hierarchical Bayesian model. In fact
it i1s common that dg, the number of levels of both direct and maternal genetic
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effects, are much larger than the sample size n. Therefore the dimension of A is
usually much bigger than n and hence (3.2) is preferable for computation. See,
however, Henderson (1976) for the computation of A~!. The scalar form for the
posterior distribution of genetic effect is given in Lemma 3.3.

Lemma 3.3. Let B = {b;;} = A™! and b}, = (b;1,..., b)) be the i-th row of B.
Under model (I) and (II), the full posterior distribution of Ve, » 1=1,2,...,k;c=
d,m;j=1,...,dy is a normal with mean,

E (Ucij |0'Uci]. ? R’ Q’ G’ t’ U’ yo) = (bjj + )‘Uci z,Cj zcj)—1

)+ Au, Zlcj (Ui = Ze_;Vei,—5 — Mu,) |

iej

X I:bijcij + bi,—i(Vci_j — Vg,

and variance,

2

T,

Var(v. 0, ,R,QG,tU ) - ,
Czjl 'UCZJ. 7Q 7y b]] —‘l‘AUCiZéjzcj

where z.; is the j-th column of Z. and Z._; represents Z. with the j-th column
deleted.

Next we will consider the posterior distributions of the variance-covariance
matrices R, Q and G. Note that

f(U}6,R)

k ! k
x |R®L,|"% exp —% {U— (@wi)o} (R®I,)™ {U— (@Wi)o}
=1 =1

« |R| ™% exp l:——%tr (R—lsu)} ,

where € denotes the direct sum operator and Sy = {S;;}xxr With S;; = (U; —
W;0,)'(U; — W;8;). Similarly we have

FBIQ) < 1Q® Ly | exp |~ 1(Q @ 1) b

o | Q|72 exp [—%tf (Q—lsh)] ,
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F(v|G) x |G ® A" 2exp [——;—v'(G ® A)_lv]
« |G]~%/? exp l:—%tr (G_IS,,)] ,

where Sj, = { h}h;} and S, = { v/A~!v;}. Therefore
f(R]6,Q,G,t,U,y°) o f(Ul|6,R)f(R)
o« [R|™(HR)/2 exp [—%tr (R-lsu)] ,
f(QI6,R,G,t,U,y°) o f(h|Q)f(Q)
o QI exp |- (@7183)
f(GlO,R,Q,t,U,y°)  f(v|G)f(G)
o |G| (4 +2k)/2 exp [%u (G—lsv)] .

These show the posterior distributions of R, Q and G are Inv-Wishart,_1(S, 1,
Inv-Wishartdh~1(S;1) and Inv-Wishartg, —1(S; 1), respectively.

The noninformative priors for the thresholds t;’s are assumed to be inde-
pendent and to be distributed as order statistics from a uniform distributions.
However, it seems that some thresholds should not be independent for certain
cases. For example, consider the 3 traits model with BWT, CEH and CEC. Be-
cause two traits are ordered categorical variable, we need two set of thresholds for
CEH and CEC. However, it is believed that the model should have the common
thresholds for both traits in the sense that both underlying variables measure the
same phenomenon, calving ease, and the calving ease scores should be determined
by the same criteria. In our preliminary study, if we do not restrict such condi-
tion to the thresholds, the estimates of two sets of thresholds tend to be quite
different, which may be unexpected. We believe that this might happen mainly
due to fact that the location and the scale parameters of underlying variables are
adjusted by the thresholds separately. In other words, two calving ease scores
are measured by different scales as well as standard (location). In this note we
assumed that some ordered categorical traits may share a set of thresholds.

Let a thresholds t* = (t,...,t5) be accompanied to yi,...,yp. Then we
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have
1
t* O’R, ,G’t_*’U, 0y —
f(t16,R,Q t;,U,¥°) min (Uj|V;; =€+ 1) — max (UylYyy = )’
1<5ms 1<J<"z

where n; is the dimension of y?. This is due to the fact that given U, each

y?,i=1,...,p has a degenerating distribution,
590,000 = [T 11 {Zl iy < Uy < 1Yy = ﬂ)} 1t € T,
i=1j=1

where T* = {(t1,t2,...,tc-1) |ti =0<tr =1<t3 < -+  <tc-1 < tmax}, and

f(tldea R7 Q’ G7 t_ig, Ua yO) 1SS f(yo|U7 t)f(t)

It shows that given U, the upper bound of the threshold ¢, is min; G(Ui5|Ys5 =
¢+ 1) and the lower bound is max; ;(U;;|Y;; = £). Hence t7; has a uniform

distribution in this interval.

Remark 1. As we mentioned before, to prevent an identifiability problem, it is
necessary to impose two restrictions on the parameters of underlying variable or
on the thresholds. Many authors set one threshold and the variance of underlying
variable to 0 and 1, respectively. Under this setting, the values of thresholds are
limited in a finite interval. In our experiment, this setting has an advantage in
speed of convergence compared with other restrictions. However, in a multiple
traits model, the restrictions on underlying variables might cause a difficulty in
specifying noninformative prior for R. We could not find a literature to solve
this problem.

Although, in an original threshold model, it is assumed that an observed
categorical variable is determined by (2.1), we conducted an experiment under
the assumption that a categorical variable Y;; is recorded by

Yii =¢, iftjp_1 < Uij/rii <ty (3.3)

with t;; = 0, t;2 = 1 and some obvious modification on Theorem 2.1, because it is
believed that the speed up is mainly due to the limited range of threshold value.
The experiment is successful. Because the thresholds in (3.3) have one-to-one
relationship with those in (2.1), we would like to recommend (3.3) for a multiple
traits threshold model. However, there may be a difficulty in interpretation of
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thresholds in a common threshold model. For instance, CEH and CEC have
a common threshold under the assumption that the underlying variables have
different location and scale parameters but the calving ease scores are determined
by the same criterion. If we defined the calving ease score by (3.3}, then the scores
are affected by the scale. Thus it violates the assumptions. Thus we do not follow
(3.3) for our numerical examples.

4. Numerical Examples

4.1. Data and model description

The data of birth weight (BWT) and calving ease (CE) from calves born from
1981 to 2000 is consisted of 322,956 from American Gelbvieh Association (AGA).
Those data were selected by herd in which records were greater than 99 and by
herd-year-season (HYS) in which records were greater than 1. HYS is defined
to associate with percentage gelbvieh and working order group as well as herd,
year and season like definition of contemporary group in AGA. We assume that
calving ease of calves born by heifer (CEH) (assumed age of dam to 930 days)
and calving ease of calves born by cow (CEC) (assumed age of dam > 930). The
CE scores are 1, 2, 3 and 4 for no assistance, minor assistance, major assistance
and caesarian, respectively. Calf’s sex and age of dam (AOD) are grouped and
assumed fixed effects. AOD for CEH are grouped with 4 categories ( AOD <
675d, 675d to 750d, 750d to 825d, and > 825d ) and AOD for CEC are grouped
with 5 categories (AOD=3 yrs, 4 yrs, 5-6 yrs, 7-8 yrs, and > 9yrs). Three
data sets were prepared with 57,643, 265,313 and 322,956 records on CEH, CEC
and CEH+CEC with BWT for all data sets. Overall and subclass mean and
proportion of each categories for CEH and CEC are shown in Table 1. Total
number of sire and average number of progeny records per sires are 4,975 and
11.59 heads on CEH and 8,685 and 30.55 heads on CEC. 728 herds are retained
for this study (Table 1).
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TABLE 1 Data information for birth weight and calving ease by heifer and cow in Gelbvieh

Data from Heifer Data from Cow
No. Obs Mean SD Min-Maz No. Obs Mean SD Min-Maz
no. progenys/sire 4975 1241  52.02 1-1646 8685  30.67 72.76 1-2609

BWT 57643  80.16  10.87 35-140 265313 86.82 11.27 35-160
Frequency for calving ease
Calving ease 1 2 3 4 1 2 3 4
Overall % 75.93  17.54 5.05 1.47  96.75 2.21 0.56 0.48
By sex
Female 82.88 13.21 3.10 0.80 98.14 1.28 0.23 0.34
Male 68.34  22.26 7.18 221 9531 3.18 0.89 0.63

By Age of dam’
550-674(3) 70.55 2147 5.77 222 9424 4.06 1.03 0.67
675-749(4) 73.97 18.88 5.53 1.62  96.75 2.23 0.59 0.43
750-824(5 6) 81.77 13.51 3.77 0.95 97.58 1.57 0.40 0.44
825-930(7 8)  86.52  10.18 2.80 0.50 97.77 1.44 0.36 0.43

(Over 8) 97.96 1.37 0.27 0.40
Proportion of HYS having category?

No. HYS 5107 2997 1282 563 10466 2792 967 869

Proportion 98.56 57.89 24.76 10.88 100.00 26.67 9.24 8.30

NoTE : ' Unit of age of dam on data from heifer(cow) is days(yrs). } Total HYS on data from
heifer(cow) 1s 5177(10467).

Three models considered in this analysis are as follow :

Yewr = XPBpyr + Zrhsur + ZyVayy + Zm Vg + €pur

(Model 1)
Ucen = XBeeu + Znheen + ZgVage + Zm Ve, + €cen

Vewr = XPBpyr + Zrhgyr + ZgViyy + Zoy Vg + ZpPeut + €pyr

(Model 2)
Ucee = XBere + Zrhcee + ZaVage + ZmVmeee + ZpPcec + €cec

yeur = XPBpyr + Zphgyr + ZgVaye + Zn Vg + ZpPeut + €8yt
UCEH = XIBCEH + ZthEH + Zdvdm + vamcEH + €cEx (Model 3)
Ucec = XBcec + Zpheee + Zg Vg + ZmVmee + ZpPcec + €cic

In particular Model 3 was analyzed with and without the restriction of common
threshold. Permanent environmental effects (PE) were included in BWT and
CEC in Model 2 and Model 3. The covariances of PE between traits were also
taken into account in these model.

Gibbs sampling analysis was carried out five times for each of the assumed
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FIGURE 1 Gibbs samples versus Gibbs cycle for thresholds(mathitcen ), variance of herd
effects (ai(CEH)) and variance of animal genetic eﬂects(afd(CEH)) on calving ease at first
parity(CEH) in Model 3

models. Each sample was consisted of 50,100 iterations, with the first 100 sam-
ples discarded and retained every 10-th estimates. To find out the convergent
point and effective sample sizes, we followed the algorithm given by Raftery and
Lewis (1992), which is known as a batching method. Figure 1 shows a typical
convergence pattern. Posterior means and Monte Carlo errors for (co)variance
components and threshold estimates from Gibbs sampler were calculated. These
logics for threshold model with Gibbs sampling and Post-Gibbs analysis were
implemented with FORTRAN90 under LINUX platform.

4.2. Results and discussion

It is well known that data associated with a particular fixed effect fall nearly
all in the same category, known as the extreme category problem (ECP), can
lead to biased estimates (Misztal et al., 1989; Moreno et al., 1997). In our study,
total number of sire was 4,975 from heifers and average number of progeny per
sire was 12.41 records. At the observations from cows, total number of sire was
8,685 and average number of progeny per sire was 30.67 (Table 1). Mean (SD) for
birth weight was 80.16 (10.87)lb on 57,643 observations from heifers and 86.82
(11.27)Ib on 265,313 observations from cows. The proportions of calving ease
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were 75.93% on scorel (unassisted), 17.54% on score 2 (easy calving), 5.06%
on score 3 (difficult calving), and 1.47% on score 4 (Caesarean) from heifers.
Furthermore, those from cows were 96.75, 2.21, 0.56 and 0.48 on score 1, 2, 3
and 4, respectively. As shown Table 1, most births were unassisted especially for
cows to calve. These proportions were in good agreement with several literatures
(Varona et al., 1999; Ramirez—Valverde, 2000).

The observations of CE on sex effects as fixed from heifers and cows were
evenly distributed. So we do not need to worry about ECP on sex effects. How-
ever, there is a risk of ECP on age of dam effect which is assumed to be fixed
effect. Also the distributions of CEH and CEC were skewed and might had ECP
problems. 98.56% of HYS have the observations on CE score 1, otherwise, 10.88%
of HYS only have the observations on CE score 4 from heifers. Likewise, all HYS
have the observations on CE score 1 and 9.24% and 8.30% of HYS have the ob-
servations on CE score 3 and 4, respectively. This effect assumed to random to
reduce bias estimates recommended by Moreno et al. (1997).

Table 2 and Table 3 show the estimated posterior means and SD of various
variance components and correlations. Variance and covariance components of
HYS effects for BWT and CEH were quickly stabilized and shown in good mixing
rates in Model 3. Furthermore, direct and maternal genetic variances as well as
residual variance for BWT were also shown to stabilize quickly and posterior
means of these variances were close to estimates using by REML in single trait
animal model.

As we mentioned before the estimates of threshold of CEH and CEC are
quite different in Model 3. We believe that this might happen mainly due to fact
that the thresholds adjust the location and the scale parameters of underlying
variables separately. Thus if the estimation of variance components is a main issue
for the analysis, this might cause a problem. However, the scaling for variance
components did not affected to variance ratio.

In animal breeding, “heritability” and “genetic correlation” are defined to be
the proportion of genetic variation on total variation and the correlation of genetic
effects between traits or correlated effects. Here heritability implies the potential
for genetic ability. The posterior means of heritabilities (empirical SD) of direct
(k%) and maternal genetic effects (h2,,) for BWT were 0.348(.066) and 0.279
(.050) in Model 1 (Table 2). These estimates are larger than those of Varona
et al. (1999). In Model 2, h2 and h%,, were estimated to be 0.417(.058) and
0.076(.013). So the estimated value of A2, in Model 2 is larger than that of Model
1. On the other hand, the estimates of h2,,, are somewhat different from the case
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TABLE 2 Means and empirical SD of heritability and genetic correlation for birth weight
(BWT), calving ease for heifers(CEH), and calving ease for cows(CEC) using marginal
posterior means from Gibbs sampling in Model 1 and Model 2

Model 1 Model 2
Mean SD Mean SD
Heritabilities
h3w 0.348 0.066 0.417 0.058
R, 0.246 0.002 - -
h2, - - 0.284 0.073
h2,. 0.279 0.050 0.076 0.013
K2, 0.164 0.019 - -
h2,. - - 0.146 0.072
Genetic Correlations

Tg(dw—dh) 0.815 0.126 - -
Tg(dw—dc) - - 0.756 0.189
Tg(dw—mw) —0.178 0.218 —0.341 0.062
Tg(dh—mh) 0.033 0.008 - -
Tg(dec—mc) - - —0.533 0.221
Tg(mw—mh) 0.403 0.035 - -
Tg(mw—me) - - 0.278 0.291

Prop. PE
cZ, - - 0.050 0.012
c? - - 0.139 0.052

Correlation for PE between traits
- - 0.276 0.159

Tpe(w—c)

of hﬁw. In Model 3, these estimates of direct and maternal genetic effects were
0.456(.003) and 0.073(.003), respectively. These estimates are in good agreement
with the results of other studies (Bennett and Gregory, 1996; Lee et al., 2001).
Other estimates can be referred from Table 2 and Table 3.

The variance components and genetic parameters for calving ease from heifers
and cows and birth weight were successfully estimated in a multivariate threshold
animal model. Calving ease from cows was assumed the different trait with calv-
ing ease from heifers. Genetic merit of calving ease for calves whatever was born
from heifer or cow can be jointly evaluated with other traits correlated regardless
of type of traits. This should be increased the precision of genetic merits. How-
ever, the research for the relationship of prior information for thresholds between
different traits is needed to compare fixed effects between different traits and to
implement the genetic evaluation. Heritability estimates for direct (maternal) ge-
netic effects of calving ease from heifer and cow were 0.32 (0.18) and 0.28 (0.17),
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TABLE 3 Means and empirical SD of heritability and genetic correlation for birth weight
(BWT), calving ease for heifers(CEH), and calving ease for cows(CEC) using marginal
posterior means from Gibbs sampling in Model 3

Two Thresholds Model Common Threshold Model
Mean SD Mean SD
Heritabilities
h3w 0.448 0.003 0.456 0.003
K2, 0.264 0.007 0.222 0.008
h3e 0.277 0.021 0.274 0.012
hZ. 0.065 0.004 0.073 0.003
K2, 0.134 0.006 0.141 0.009
hZ,. 0.157 0.016 0.143 0.012
Genetic Correlations
Tg(dw—dh) 0.762 0.035 0.874 0.013
Tg(dw—dc) 0.799 0.026 0.802 0.018
Tg(dw—mw) —0.262 0.017 —0.283 0.008
Tg(dh—dc) 0.656 0.032 0.746 0.008
Tg(dh—mh) 0.042 0.045 0.047 0.017
Tg(de—mc) —-0.365 0.068 —0.465 0.021
Tg(mw—mh) 0.659 0.032 0.686 0.023
Tg(muw—me) 0.142 0.047 0.186 0.047
Tg(mh—mec) 0.186 0.090 0.264 0.061
Prop. PE
c2 0.060 0.001 0.057 0.001
c? 0.118 0.007 0.086 0.005
Correlation for PE between traits
Tpe(w—c) 0.186 0.027 0.088 0.055
Thresholds
t13 2.288 0.000 2.540 0.014
ta3 1.176 0.029 - -

respectively, in three traits threshold animal model with two categorical traits.
Genetic correlation estimate for direct genetic effects for calving ease between
from heifer and from cow was 0.59 with marginal posterior mean.

As shown tables, conditional posterior distributions for variance-covariance
components with conditioned common thresholds for between CEH and CEC
traits were used different to different thresholds for between these traits. Nev-
ertheless, variance ratios (heritabilities and genetic correlations) for categorical
traits were similar with common thresholds and different thresholds. However,
the scale for location parameters should be different with each other. If location
parameters (breeding values) were interest, common thresholds were used should
be recommended to estimate genetic merits.
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