• Title/Summary/Keyword: Gesture Recognition.

Search Result 558, Processing Time 0.029 seconds

Gesture Recognition using Training-effect on image sequences (연속 영상에서 학습 효과를 이용한 제스처 인식)

  • 이현주;이칠우
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.222-225
    • /
    • 2000
  • Human frequently communicate non-linguistic information with gesture. So, we must develop efficient and fast gesture recognition algorithms for more natural human-computer interaction. However, it is difficult to recognize gesture automatically because human's body is three dimensional object with very complex structure. In this paper, we suggest a method which is able to detect key frames and frame changes, and to classify image sequence into some gesture groups. Gesture is classifiable according to moving part of body. First, we detect some frames that motion areas are changed abruptly and save those frames as key frames, and then use the frames to classify sequences. We symbolize each image of classified sequence using Principal Component Analysis(PCA) and clustering algorithm since it is better to use fewer components for representation of gestures. Symbols are used as the input symbols for the Hidden Markov Model(HMM) and recognized as a gesture with probability calculation.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Kim, Moon-Hwan;hwang, suen ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.51-56
    • /
    • 2009
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

  • PDF

Dynamic Training Algorithm for Hand Gesture Recognition System (손동작 인식 시스템을 위한 동적 학습 알고리즘)

  • Bae, Cheol-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1348-1353
    • /
    • 2007
  • We developed an augmented new reality tool for vision-based hand gesture recognition in a camera-projector system. Our recognition method uses modified Fourier descriptors for the classification of static hand gestures. Hand segmentation is based on a background subtraction method, which is improved to handle background changes. Most of the recognition methods are trained and tested by the same service-person, and training phase occurs only preceding the interaction. However, there are numerous situations when several untrained users would like to use gestures for the interaction. In our new practical approach the correction of faulty detected gestures is done during the recognition itself. Our main result is the quick on-line adaptation to the gestures of a new user to achieve user-independent gesture recognition.

Hand Gesture Recognition with Convolution Neural Networks for Augmented Reality Cognitive Rehabilitation System Based on Leap Motion Controller (립모션 센서 기반 증강현실 인지재활 훈련시스템을 위한 합성곱신경망 손동작 인식)

  • Song, Keun San;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.186-192
    • /
    • 2021
  • In this paper, we evaluated prediction accuracy of Euler angle spectrograph classification method using a convolutional neural networks (CNN) for hand gesture recognition in augmented reality (AR) cognitive rehabilitation system based on Leap Motion Controller (LMC). Hand gesture recognition methods using a conventional support vector machine (SVM) show 91.3% accuracy in multiple motions. In this paper, five hand gestures ("Promise", "Bunny", "Close", "Victory", and "Thumb") are selected and measured 100 times for testing the utility of spectral classification techniques. Validation results for the five hand gestures were able to be correctly predicted 100% of the time, indicating superior recognition accuracy than those of conventional SVM methods. The hand motion recognition using CNN meant to be applied more useful to AR cognitive rehabilitation training systems based on LMC than sign language recognition using SVM.

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.

A Study on Gesture Recognition using Edge Orientation Histogram and HMM (에지 방향성 히스토그램과 HMM을 이용한 제스처 인식에 관한 연구)

  • Lee, Kee-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2647-2654
    • /
    • 2011
  • In this paper, the algorithm that recognizes the gesture by configuring the feature information obtained through edge orientation histogram and principal component analysis as low dimensional gesture symbol was described. Since the proposed method doesn't require a lot of computations compared to the existing geometric feature based method or appearance based methods and it can maintain high recognition rate by using the minimum information, it is very well suited for real-time system establishment. In addition, to reduce incorrect recognition or recognition errors that occur during gesture recognition, the model feature values projected in the gesture space is configured as a particular status symbol through clustering algorithm to be used as input symbol of hidden Markov models. By doing so, any input gesture will be recognized as the corresponding gesture model with highest probability.

Development of Gesture Recognition-Based 3D Serious Games (치매 예방을 위한 제스처 인식 기반 3D 기능성 게임 개발)

  • He, Guan-Feng;Park, Jin-Woong;Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.103-113
    • /
    • 2011
  • In this paper, we propose gesture recognition based 3D Serious Games to prevent dementia. These games are designed to enhance the effect of preventing dementia by helping increase brain usage and physical activities of users by the entire body gesture recognition. The existing cameras used for gesture recognition technology are limited in terms of recognition ratio and operation range. For more stable recognition of the body gestures, we recognized users with a 3D depth camera, obtained joint data of users, and analyzed joint motions to recognize gestures of the body. Game contents were designed to practice memory, reasoning, calculation, and spatial recognition focusing on the atrophy of brain cells as a major cause of dementia. Game results of each user were saved and analyzed to measure how their recognition skills improved.

Virtual Block Game Interface based on the Hand Gesture Recognition (손 제스처 인식에 기반한 Virtual Block 게임 인터페이스)

  • Yoon, Min-Ho;Kim, Yoon-Jae;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.113-120
    • /
    • 2017
  • With the development of virtual reality technology, in recent years, user-friendly hand gesture interface has been more studied for natural interaction with a virtual 3D object. Most earlier studies on the hand-gesture interface are using relatively simple hand gestures. In this paper, we suggest an intuitive hand gesture interface for interaction with 3D object in the virtual reality applications. For hand gesture recognition, first of all, we preprocess various hand data and classify the data through the binary decision tree. The classified data is re-sampled and converted to the chain-code, and then constructed to the hand feature data with the histograms of the chain code. Finally, the input gesture is recognized by MCSVM-based machine learning from the feature data. To test our proposed hand gesture interface we implemented a 'Virtual Block' game. Our experiments showed about 99.2% recognition ratio of 16 kinds of command gestures and more intuitive and user friendly than conventional mouse interface.

Mobile Game Control using Gesture Recognition (제스처 인식을 활용한 모바일 게임 제어)

  • Lee, Yong-Cheol;Oh, Chi-Min;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.629-638
    • /
    • 2011
  • Mobile game have an advantage of mobility, portability, and simple interface. These advantages are useful for gesture recognition based game which should not have much content quantity and complex interface. This paper suggests gesture recognition based mobile game content with user movement could be applied directly to the mobile game wherever recognition system is equipped. Gesture is recognized by obtaining user area in image from the depth image of TOF camera and going through SVM(Support Vectorn Machine) using EOH(Edge Of Histogram) features of user area. And we confirmed that gesture recognition can be utilized to user input of mobile game content. Proposed technique can be applied to a variety of content, but this paper shows a simple way of game contents which is consisted of moving and jumping newly.

3D Virtual Reality Game with Deep Learning-based Hand Gesture Recognition (딥러닝 기반 손 제스처 인식을 통한 3D 가상현실 게임)

  • Lee, Byeong-Hee;Oh, Dong-Han;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2018
  • The most natural way to increase immersion and provide free interaction in a virtual environment is to provide a gesture interface using the user's hand. However, most studies about hand gesture recognition require specialized sensors or equipment, or show low recognition rates. This paper proposes a three-dimensional DenseNet Convolutional Neural Network that enables recognition of hand gestures with no sensors or equipment other than an RGB camera for hand gesture input and introduces a virtual reality game based on it. Experimental results on 4 static hand gestures and 6 dynamic hand gestures showed that they could be used as real-time user interfaces for virtual reality games with an average recognition rate of 94.2% at 50ms. Results of this research can be used as a hand gesture interface not only for games but also for education, medicine, and shopping.