• 제목/요약/키워드: Geometrical Model

검색결과 868건 처리시간 0.025초

과학교육 연구의 균현성을 위한 모형과 지수 (A Model and an Index for the Balance of Researches in Science Education)

  • 송진웅
    • 한국과학교육학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 1995
  • One of the problem of science education in terms of its status as a unique discipline is the tendency of qualitative, rather than quantitative, arguments and judgements on research activities. In this study, a model called "Diamond Model" and an index formula for the balance of researches are suggested for achieving more pictoricaI and quantitative understandings on the distribution of researches in science education. Diamond Model is consisted of two dimensions corresponding to two main long-debated issues in science education, i.e. the dimension of cognitive-affective and the dimension of concept-process. In Diamond Model the geometrical symmetry represents the the balance of researches. An index formula for the balance was developed in order to ensure that the value of the index is between 0 to 1 and the numerical values of the index corresponds to the geometrical symmetry of the diamond. Then, in order to check their utility, the model and the index formula were applied to analyze the research papers appeared in JKARSE for the last 10 years.

  • PDF

입 . 출력변위비를 고려한 컴플라이언트 메커니즘 설계 (Compliant Mechanism Design with Geometrical Advantage)

  • 김영기;민승재
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.764-771
    • /
    • 2003
  • To control the motion generated by a compliant mechanism the design method using specified geometrical advantage is proposed. The optimization problem is formulated to minimize the difference between the specified and the current geometrical advantage of a mechanism and topology optimization is applied to determine the layout of a mechanism. The results of several test problems including a displacement converter design and a gripper design are compared with a multi-criteria model and show that the design of an accurate compliant mechanism with specified geometrical advantage can be obtained.

측벽 밀링에서 공구 변형 및 형상 정밀도 (Tool Deflection and Geometrical Accuracy in Side Wall Milling)

  • 류시형;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF

압전구동기에 사용되는 힌지 메커니즘의 기구학적 비선형성에 관한 연구 (Study on the geometrical nonlinearity of the hinge mechanism used in a piezoactuator)

  • 김준형;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1638-1642
    • /
    • 2003
  • Piezoactuator using a flexure hinge mechanism is often used in the precision stages. When the total size of the hinge mechanism become small compared with the deformation of the hinge mechanism, the geometrical nonlinearity makes a considerable error in the output displacement. In this research, the incremental method based on the matrix method is developed to model the effect of the geometrical nonlinearity. Developed modeling method is applied to derive the error of output displacement of the bridge-type hinge mechanism and its results are derived with respect to the design parameters. This method can be easily used to the design optimization of the hinge mechanism and analysis results show that the geometrical nonlinearity error should be considered to achieve a high accuracy to the piezoactuators.

  • PDF

Exploring Level Descriptors of Geometrical Thinking

  • Srichompoo, Somkuan;Inprasitha, Maitree;Sangaroon, Kiat
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제15권1호
    • /
    • pp.81-91
    • /
    • 2011
  • The aim of this study was to explore the grade 1-3 students' geometrical thinking level descriptors based on van Hiele level descriptors. The data were collected through collection of geometric curriculum materials such as indicators and learning standards in Basic Education Core Curriculum and mathematics textbook for grades 1-3. The findings were found that 1) Inconsistency between descriptors appeared on mathematics curriculum and Thai mathematics textbooks. 2) Using topics on textbooks as criterion for exploring 5 of 7 descriptors appeared on Thai mathematics textbook indicated geometrical thinking levels based on van Hiele's model merely level 0 (Visualization) across textbooks for grades 1-3.

균일 회절 이론을 이용한 선박 환경에서의 단말기 사용자 쉐도잉 분석 기법 (User-Body Shadowing Analysis Technique in Ship Environment Based on the Uniform Geometrical Theory of Diffraction)

  • 김창회;정재훈;이성로;김성철
    • 한국통신학회논문지
    • /
    • 제39C권11호
    • /
    • pp.1209-1215
    • /
    • 2014
  • 기하학적 균일 회절 이론(UTD)은 특정 주파수에서 장애물에 의해 전파가 불연속적인 특성을 가질 때, 전자기학적으로 접근하여 회절 계수와 반사 계수 등을 계산하여 전파를 분석하는 기법이다. 본 논문에서는 실내 무선 채널 환경에서 사용자가 단말기 주변에 있을 때, 사용자에 의한 쉐도잉(Shadowing) 효과를 기하학적 UTD을 통하여 분석하였다. 사용자가 통화를 하고 있는 상황(Head Model)과 가슴 앞쪽에 단말기를 위치하여 사용하는 상황(Chest Model)으로 나누고, 각각에 대하여 복사 모델(Radiation Model)과 산란 모델(Scattering Model)에 적용하여 비교 및 분석하였다.

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • 제43권2호
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

형상의 대칭성을 이용한 효율적인 3차원 유한요소 해석 기법에 관한 연구 (A Study on the Efficient Finite Element Technique using Geometrical Symmetry)

  • 임창환;김홍규;이석희;정현교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권7호
    • /
    • pp.462-467
    • /
    • 2000
  • In general, when geometry and current distribution have a periodic or symmetric property, the analysis of a part model is sufficient to represent that of a whole model by using the periodic boundary condition. It is impossible, however, to apply the periodic boundary condition when the current distribution is not symmetric even if the geometry of the model is symmetric. In this paper, a novel technique to resolve this problem is proposed. Even when the geometry is symmetric and the current distribution is not, the proposed method enables that calculation time for a whole model is reduced to that for a part model. The proposed method is applied to a deflection yoke (DY), and validness and efficiency of the method are verified.

  • PDF

자유곡면 볼엔드 밀링공정에서 CUSP PATTERN 조정

  • 심충건;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.106-110
    • /
    • 2001
  • The ball-end milling process is widely used in the die/mold industries, and it is very suitable for the machining of free-form surfaces. However, this process is inherently inefficient process to compared with the end-milling or face milling process, since it relays upon the machining at the cutter/surface contact point. The machined part is the result of continuous point-to-point machining on the free-form surface. And cusps (or scallops) remain at the machined part along the cutter paths and they give the geometrical roughness of the workpiece. Thus, for the good geometrical roughness of the workpiece, it is required very tightly spaced cutter paths in this ball-endmilling process. However, with the tight cutter paths, the geometrical roughness of the workpiece is not regular on the workpiece since the cusp height is variable in the previously developed ISO-parametric or Cartesian machining methods. This paper suggests a method of tool path generation which makes the geometrical roughness of workpiece be constant through the machined surface. In this method, Ferguson Surface design Model is used and cusp height is derived from the instantaneous curvatures. And, to have constant cusp height, an increment of parameter u or v is estimated along the reference cutter path. In ball-end milling experiments, the cusp pattern was examined, and it was proved that the geometrical roughness could be regular by suggested tool path generation method.

Parametric surface and properties defined on parallelogrammic domain

  • Fan, Shuqian;Zou, Jinsong;Shi, Mingquan
    • Journal of Computational Design and Engineering
    • /
    • 제1권1호
    • /
    • pp.27-36
    • /
    • 2014
  • Similar to the essential components of many mechanical systems, the geometrical properties of the teeth of spiral bevel gears greatly influence the kinematic and dynamic behaviors of mechanical systems. Logarithmic spiral bevel gears show a unique advantage in transmission due to their constant spiral angle property. However, a mathematical model suitable for accurate digital modeling, differential geometrical characteristics, and related contact analysis methods for tooth surfaces have not been deeply investigated, since such gears are not convenient in traditional cutting manufacturing in the gear industry. Accurate mathematical modeling of the tooth surface geometry for logarithmic spiral bevel gears is developed in this study, based on the basic gearing kinematics and spherical involute geometry along with the tangent planes geometry; actually, the tooth surface is a parametric surface defined on a parallelogrammic domain. Equivalence proof of the tooth surface geometry is then given in order to greatly simplify the mathematical model. As major factors affecting the lubrication, surface fatigue, contact stress, wear, and manufacturability of gear teeth, the differential geometrical characteristics of the tooth surface are summarized using classical fundamental forms. By using the geometrical properties mentioned, manufacturability (and its limitation in logarithmic spiral bevel gears) is analyzed using precision forging and multiaxis freeform milling, rather than classical cradle-type machine tool based milling or hobbing. Geometry and manufacturability analysis results show that logarithmic spiral gears have many application advantages, but many urgent issues such as contact tooth analysis for precision plastic forming and multiaxis freeform milling also need to be solved in a further study.