• Title/Summary/Keyword: Geometric Representation

Search Result 205, Processing Time 0.031 seconds

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

A Study on the Transformation of Algebraic Representation and the Elaboration for Grade 7 (중학교 1학년 학생의 대수적 표상 전환 및 정교화 연구)

  • Lee, Kyong Rim;Kang, Jeong Gi;Roh, Eun Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.17 no.4
    • /
    • pp.507-539
    • /
    • 2014
  • The algebra is an important tool influencing on a mathematics in general. To make good use of the algebra, it is necessary to transfer from a given situation to a proper algebraic representation. But some research in related to algebraic word problems have reported the difficulty changing to a proper algebraic representation. Our study have focused on transformation and elaboration of algebraic representation. We investigated in detail the responses and perceptions of 29 Grade 7 students while transforming to algebraic representation, only concentrating on the literature expression form the problematic situations given. Most of students showed difficulties in transforming both descriptive and geometric problems to algebraic representation. 10% of them responded wrong answers except only a problem. Four of them were interviewed individually to show their thinking and find the factor influencing on a positive elaboration. As results, we could find some characteristics of their thinking including the misconception that regard the problem finding a functional formula because there are the variables x and y in the problematic situation. In addition, we could find the their fixation which student have to set up the equation. Furthermore we could check that making student explain own algebraic representation was able to become the factor influencing on a positive elaboration. From these, we also discussed about several didactical implications.

  • PDF

Hull Form Representation using a Hybrid Curve Approximation (혼합 곡선 근사법을 이용한 선형 표현)

  • Hyun-Cheol Kim;Kyung-Sun Lee;Soo-Young Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 1998
  • This paper presents the hybrid curve approximation with geometric boundary conditions as position vector and tangent vector of start and end point using a B-spline approximation and a genetic algorithm First, H-spline approximation generates control points to fit B-spline curries through specified data points. Second, these control points are modified by genetic algorithm(with floating point representation) under geometric boundary conditions. This method would be able to execute the efficient design work without fairing.

  • PDF

3D Geometric Reasoning for Solid Model Conversion and Feature Recognition (솔리드 모델 변환과 특징형상인식을 위한 기하 추론)

  • Han, Jeonghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 1997
  • Solid modeling refers to techniques for unambiguous representations of three- dimensional objects. The most widely used techniques for solid modeling have been Constructive Solid Geometry (CSG) and Boundary Representation (BRep). Contemporary solid modeling systems typically support both representations, and bilateral conversions between CSG and BRep are essential. However, computing a CSG from a BRep is largely an open problem. This paper presents 3D geometric reasoning algorithms for converting a BRep into a special CSG, called Destructive Solid Geometry (DSG) whose Boolean operations are all subtractions. The major application area of BRep-to-DSG conversion is feature recognition, which is essential for integrating CAD and CAM.

  • PDF

GEOMETRIC REPRESENTATIONS OF FINITE GROUPS ON REAL TORIC SPACES

  • Cho, Soojin;Choi, Suyoung;Kaji, Shizuo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1265-1283
    • /
    • 2019
  • We develop a framework to construct geometric representations of finite groups G through the correspondence between real toric spaces $X^{\mathbb{R}}$ and simplicial complexes with characteristic matrices. We give a combinatorial description of the G-module structure of the homology of $X^{\mathbb{R}}$. As applications, we make explicit computations of the Weyl group representations on the homology of real toric varieties associated to the Weyl chambers of type A and B, which show an interesting connection to the topology of posets. We also realize a certain kind of Foulkes representation geometrically as the homology of real toric varieties.

A Study on the Teaching and Learning Method of Simultaneous Quadratic Equations Using GeoGebra (GeoGebra를 활용한 연립이차방정식 교수.학습 방안 연구)

  • Yang, Seong Hyun
    • East Asian mathematical journal
    • /
    • v.37 no.2
    • /
    • pp.265-288
    • /
    • 2021
  • In the 2015 revised mathematics curriculum, the system of equations is first introduced in 'Variables and Expressions' of [Middle School Grades 1-3]. Then, It is constructed that after learning the linear function in 'Functions', the relationship between the graphs of two linear functions and the systems of linear equations are learned so that students could improve the geometric representation of the systems of equations. However, in of Elective-Centered Curriculum Common Courses, Instruction is limited to algebraic manipulation when teaching and learning systems of quadratic equations. This paper presented the teaching and learning method that can improve students' mathematical connection through various representations by providing geometric representations in parallel using GeoGebra, a mathematics learning software, with algebraic solutions in the teaching and learning situation of simultaneous quadratic equations.

Representation of Geometric Tolerances and its Application to Assemblability Checking (기하 공차의 표현 및 조립성 확인에의 응용)

  • 박상호;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.215-223
    • /
    • 1996
  • Every mechanical part is fabricated with the variations in its size and shape, and the allowable range of the variation is specified by the tolerance in the design stage. Geometric tolerances specify the size or the thickness of each shape entity itself or its relative position and orientation with respect to datums while considering their order of precedence. It would be desirable if the assemblability of parts could be verified in the computer when the tolerances on the parts are store together with the geometric model of the parts of an assembly and their assembled state. Therefore, a new method is proposed to represent geometric tolerances and to determine the assemblability. This method determines the assemblability by subdividing the ranges of relative motion between parts until there exists the subdivided regions that do not cause the interference.

  • PDF

Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation (NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동)

  • Choi, Jin-Bok;Roh, Hee-Yuel;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

A Geometric Derivation of the Craig Representation for the Two-Dimensional Gaussian Q-Function (이변량 가우시안 Q-함수의 Craig 표현에 대한 기하학적인 유도)

  • Park, Seung-Keun;Lee, Il-Kyoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4A
    • /
    • pp.325-328
    • /
    • 2011
  • In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional (2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises. The presented Craig form can play a important role in computing the probability represented by the 2-D Gaussian Q-function.

A Study on the Representation of the Dimensions in the Feature-based Modeler Based on the B-rep (경계 표현법을 기반으로 한 특징 형상 모델러에서 치수 정보의 표현에 관한 연구)

  • 변문현;오익수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.122-132
    • /
    • 1996
  • Features are generic shapes with which engineers associate certain attributes and knowledge useful in reasoning about the product. Feature-based modeling systems support additional levels of information beyond those available in geometric modelers. The objective of this study is to develop a PC level feature-based modeling system which explicitly represents dimensions of the part. The feature-based modeler retains all the benefits of traditional B-rep. solid models, and represents the dimensions at a high level of a abstraction so that dimension driven geometry can be achieved.

  • PDF