• Title/Summary/Keyword: Geometric Nonlinear

Search Result 676, Processing Time 0.024 seconds

Robust sliding mode control of nonlinear uncertain system via geometric approach (기하학적 접근에 의한 비선형 불확실성 시스템에 대한 강건한 슬라이딩 모드 제어)

  • 박동원;김우철;김정식;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1213-1218
    • /
    • 1993
  • Variable structure control is applied to the robust output tracking control problem of general nonlinear multi-input multi-output (MIMO) systems. Using the concept of relative degree and minimum phase, input/output(I/O) linearization is undertaken. For I/O the linearized system, a new sliding hyperplanes design method is proposed. In this procedure, we can construct very robust and efficient sliding mode controller for general nonlinear systems of relative degree higher than two. The control results are illustrated by adopting a numerical example.

  • PDF

Nonlinear Time-Varying Control Based on Differential Geometry

  • Lee, Jong-Yong;Jung, Kye-dong;Cho, Seongsoo;Strzelecki, Michat
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • This paper presents a study on nonlinear time varying systems based on differential geometry. A brief introduction about controllability and involutivity will be presented. As an example, the exact feedback linearization and the approximate feedback linearization are used in order to show some application examples.

An analytical Study on the Elasto-Plastic Behaviour of Steel Structure Member & Frame under Cyclic Load (반복 하중을 받는 강 구조 부재 및 골조의 탄소성 성상에 관한 해석적 연구)

  • 김화중;권영환;박정민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.52-57
    • /
    • 1992
  • The purpose of this study is that to develop computer program, which is about to analy size nonlinear behaviour of elastic framed structures include to geometric & material nonlineality, and to formulate between stress-strain relationship. In order to examplity the efficiency of this program, a few analytical results have been obtained on : (1) nonlinear behaviour of beam which is subject to vertical force (2) nonlinear behaviour of portal frame which is subject to vertical & horizontal force.

  • PDF

Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects

  • Kunbar, Laith A. Hassan;Hamad, Luay Badr;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.619-630
    • /
    • 2020
  • This paper studies nonlinear free vibration characteristics of nonlocal magneto-electro-elastic (MEE) nanobeams resting on nonlinear elastic substrate having geometrical imperfection by considering piezoelectric reinforcement scheme. The piezoelectric reinforcement can cause an enhanced vibration behavior of smart nanobeams under magnetic field. All of previously reported studies on MEE nanobeams ignore the influences of geometric imperfections which are very substantial due to the reason that a nanobeam cannot be always perfect. Nonlinear governing equations of a smart nanobeam are derived based on classical beam theory and an analytical trend is provided to obtained nonlinear vibration frequency. This research shows that changing the volume fraction of piezoelectric constituent in the material has a great influence on vibration behavior of smart nanobeam under electric and magnetic fields. Also, it can be seen that nonlinear vibration behaviors of smart nanobeam are dependent on the magnitude of exerted electric voltage, magnetic potential, hardening elastic foundation and geometrical imperfection.

An Observer for Nonlinear Systems Using Approximate Observer Form (근사 관측기 형태를 이용한 비선형 시스템의 관측기)

  • Lee, Sungryul;Sin, Hyeon-Seok;Park, Mignon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.471-476
    • /
    • 2001
  • This paper presents a state observer for nonlinear systems using approximate observer from. It is shown that if a nonlinear system is approximately error linearizable, then there exists a local nonlinear observer whose estimation error converges exponentially to zero. Since the proposed method relaxes strong geometric conditions of previous works, it improves the existing results for nonlinear observer design. Finally, some example is given to show the effectiveness of this scheme.

  • PDF

A Study on a Stochastic Nonlinear System Control Using Neural Networks (신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • Seok, Jin-Wuk;Choi, Kyung-Sam;Cho, Seong-Won;Lee, Jong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-272
    • /
    • 2000
  • In this paper we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastcic approximation method it is regarded as a stochastic recursive filter algorithm. In addition we provide a filtering and control condition for a stochastic nonlinear system called the perfect filtering condition in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable and the proposed neural controller is more efficient than the conventional LQG controller and the canonical LQ-Neural controller.

  • PDF

Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • This research tries to present a nonlinear thermo-elastic solution for a functionally graded spherical shell subjected to mechanical and thermal loads. Geometric nonlinearity is considered using the Lagrange or finite strain tensor. Non-homogeneous material properties are considered based on a power function. Adomian's decomposition method is used for calculation of nonlinear results. Nonlinear results such as displacement can be evaluated for sphere in terms of different indexes of non-homogeneity. A comprehensive comparison between linear and nonlinear results and evaluation of the percentage of difference between them can be performed in this paper. The obtained results indicate that the improvement of the results due to usage of nonlinear analysis is depending on the non-homogeneous index.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

Stochastic vibration response of a sandwich beam with nonlinear adjustable visco-elastomer core and supported mass

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.259-270
    • /
    • 2017
  • The stochastic vibration response of the sandwich beam with the nonlinear adjustable visco-elastomer core and supported mass under stochastic support motion excitations is studied. The nonlinear dynamic properties of the visco-elastomer core are considered. The nonlinear partial differential equations for the horizontal and vertical coupling motions of the sandwich beam are derived. An analytical solution method for the stochastic vibration response of the nonlinear sandwich beam is developed. The nonlinear partial differential equations are converted into the nonlinear ordinary differential equations representing the nonlinear stochastic multi-degree-of-freedom system by using the Galerkin method. The nonlinear stochastic system is converted further into the equivalent quasi-linear system by using the statistic linearization method. The frequency-response function, response spectral density and mean square response expressions of the nonlinear sandwich beam are obtained. Numerical results are given to illustrate new stochastic vibration response characteristics and response reduction capability of the sandwich beam with the nonlinear visco-elastomer core and supported mass under stochastic support motion excitations. The influences of geometric and physical parameters on the stochastic response of the nonlinear sandwich beam are discussed, and the numerical results of the nonlinear sandwich beam are compared with those of the sandwich beam with linear visco-elastomer core.

Analysis of Flexible Media: I. Static and Dynamic Analysis (유연매체의 거동해석: I. 정.동적 거동해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1253-1258
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, only the flexible media analysis is performed as early stage of analysis including aerodynamic effect. Through formulations and simulations for total Lagrangian(TL), updated Lagrangian (UL) and co-rotational(CR) method which are widely used for geometric nonlinear analysis, usefulness and reliability of each methods are investigated.

  • PDF