• Title/Summary/Keyword: Geometric Data

Search Result 1,617, Processing Time 0.027 seconds

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF

A Study on the Concentration of Nanoparticles and Heavy Metals in Indoor/Outdoor Air in a University Administrative Public Office (대학교 행정실 실내 외 공기 중 나노입자와 중금속 농도에 관한 연구)

  • Choi, Su-Hyeon;Im, Ji-Young;Park, Hee-Jin;Chung, Eun-Kyung;Kim, Jong-Oh;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.6
    • /
    • pp.493-502
    • /
    • 2012
  • Objectives: The purpose of this study is to investigate the mass concentration of nanoparticles and understand the characteristics of elements of heavy metal concentrations within nanoparticles in the air using Micro-Orifice Uniform Deposit Impactor Model-110 (MOUDI-110), based on indoor and outdoor air. Methods: This Study sampled nanoparticles using MOUDI-110 indoors (office) and outdoors at S University in Asan, Korea in order to reveal the concentration of nanoparticles in the air. Sampling continued for nine months (10 times indoors and 14 times outdoors) from March to November 2010. Mass concentrations of nanoparticle and concentrations of heavy metals (Al, Mn, Zn, Ni, Cu, Cr, Pb) were analyzed. Results: Indoors, geometric mean concentration of nanoparticles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 0.929 ${\mu}g/m^3$ and 1.002 ${\mu}g/m^3$, respectively. On the other hand, the levels were lower outdoors with 0.819 ${\mu}g/m^3$ and 0.597 ${\mu}g/m^3$. Mann-Whitney U tests showed that the difference between the indoors and the outdoors was statistically meaningful in terms of particles of 0.056 ${\mu}m$ or less (p<0.05) in size. These results are possibly influenced by the use of printers and duplicators as the factor that increased the concentration of nanoparticles. In seasonal concentration distribution, the level was higher during the summer compared to in the autumn. Those of 0.056 ${\mu}m$ or less in size presented a statistically meaningful difference during the summer (p<0.05). These results may be influenced by photochemical event as the factor that makes the levels high. Regarding zinc, among the other heavy metals, the fine particles ranged in size from 0.056 ${\mu}m$ to 0.10 ${\mu}m$ and those of 0.056 ${\mu}m$ or less recorded 1.699 $ng/m^3$ and 1.189 $ng/m^3$ in the outdoors. In the indoors, the levels were lower, with 0.745 $ng/m^3$ and 0.617 $ng/m^3$. Cr and Ni at the size of 0.056 ${\mu}m$ or less, both of which have been known to pose severe health effects, recorded higher concentrations indoors with 0.736 $ng/m^3$ and 0.177 $ng/m^3$, compared to 0.444 $ng/m^3$ and 0.091 $ng/m^3$ outdoors. By season, Zn, Ni, Cu and Pb posted a high level of indoor concentration during the fall. As for Cr, the level of concentration indoors was higher than outdoors both during the summer and the autumn. Conclusion: This study indicates the result of an examination of nano-sized particles and heavy metal concentrations. It will provide useful data for the determination of basic nanoparticle standards in the future.

Relationship between Expandability, MacEwan Crystallite Thickness, and Fundamental Particle Thickness in Illite-Smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 팽창성과 MacEwan 결정자 및 기본입자두께에 관한 연구)

  • 강일모;문희수;김재곤;송윤구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The object of this study was to interpret the ralationship between expandability (% $S_{XRD}$), MacEwan crystallite thickness ( $N_{CSD}$), and mean fundamental particle thickness ( $N_{F}$ ) in illite-semctite mixed layer (I-S), quantitatively. This interpretation was extracted from comparison of two structural models (MacEwan crystallite model and fundamental particle model) of I-S mixed layers. In I-S structure, % $S_{XRD}$, $N_{CSD}$, and $N_{F}$ are not independent parameters but are related to each others by particular geometric relations. % $S_{XRD}$ is dependent on $N_{CSD}$ by short-stack effect, whereas, % $S_{XRD}$ and $N_{F}$ have relation to smectite interlayer number (Ns)=( $N_{F-}$1)/(100%/% $S_{XRD-}$ $N_{F}$ . Therefore, % $S_{XRD}$ and $N_{F}$ should satisfy a specific physical condition, 1< $N_{F}$ <100%/% $S_{XRD}$, because $N_{s}$ is positive. Based on this condition, this study suggested % $S_{XRD}$ vs $N_{F}$ diagram which can be used to interpret % $S_{XRD}$, $N_{F}$ , $N_{S}$ , and ordering, quantitatively. The diagram was examined by XRD data for I-S samples from Ceumseongsan volcanic complex, Korea. I-S samples showed that $N_{F}$ departs from the physical upper-limit ( $N_{F}$ =100%/% $S_{XRD}$) with decrease in % $S_{XRD}$. This phenomenon may happen due to decrease of stacking-capability of fundamental particles with their thickening.g.s with their thickening.g.

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Blood Lead, Manganese, Aluminium and Silicon Concentrations in Korean Adults (한국인의 연, 망간, 알루미늄 및 실리콘의 혈중 농도)

  • Kim, Jung-Man;Ahn, Jung-Mo;Kim, Won-Sul;Kim, Jung-Il;Shin, Hai-Rim;Jung, Kap-Yeol;Kim, Joon-Youn
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.2
    • /
    • pp.157-164
    • /
    • 2000
  • Objectives : This study was peformed to determine the reference values of blood lead, manganese, aluminium, and silicon in healthy adults. Methods : The subjects were 132 (67 male and 65 female), and classified to three age groups $(\leq39,\;40\sim49,\;and\;50\leq)$. Blood lead, manganese and aluminium were analyzed by atomic absorption spectrophotometer, and blood silicon was analyzed by direct current plasma optical emission spectrometer. Results : Blood lead levels(geometric mean, S.D) were (3.49, 1.70) ${\mu}g/dL$ in male and (3.04, 1.65) ${\mu}g/dL$ in female, but the difference is not significant, and there was no significant difference between age groups. Mean blood manganese level was $0.99{\pm}0.41{\mu}g/dL$, and there was no significant difference between sex or age groups. Mean blood aluminium level was $0.59{\pm}0.35{\mu}g/dL$, and there was no significant difference between sex or age groups. Mean blood silicon level was $54.41{\pm}27.64{\mu}g/dL$ in male and $43.34{\pm}23.51{\mu}g/dL$ in female, and the level in male was significantly higher than that in female (p<0.05). There was significant difference between age groups, and the oldest showed the highest level in male (p<0.05), but no significant difference between age groups in female. Conclusions : Authors hope that this study would provide basic data for determining reference values and evaluating health effects.

  • PDF

Improvement of GPS positioning accuracy by static post-processing method (정적 후처리방식에 의한 GPS의 측위정도 개선)

  • 김민선;신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.251-261
    • /
    • 2003
  • To measure the GPS position accuracy and its distribution according to the length of the baseline, 30 minutes to 24 hours observations at the fixed location were conducted with two GPS receivers (Ll, 12 channels) on May 29 to June 2, 2002. The GPS data received at the reference station, the rover station and the ordinary times GPS observation station operated by the National Geography Institute in Korea were processed in kinematic and static post-processing methods with a post -processing software. The results obtained are summarized as follows: 1. The number of the satellite that could be observed continuously more than six hours was 16 and most of these satellites were positioned at east-west direction on May 31, 2002. The number of the satellite observed and the geometric dilution of precision (GDOP) determined by the average of every 10 minute for the day were 8 and 3.89, respectively. 2. Both the average GPS positions before and after post-processing were shifted (standalone: 1.17 m, post -processing: 0.43m) to the south and west. The twice distance root mean square (2drms) measured with standalone was 6.65m. The 2drms could be reduced to 33.8% (standard deviation 0=17.2) and 5.3% (0=2.2) of standalone by the kinematic and the static post-processing methods, respectively. 3. The relationship between the length of the baseline x (km) and the 2drms y (m) obtained by the static post-processing method was y=0.00l6x+0.006 $(R^2=0.87)$. In the case of the positioning with the static post-processing method using the GPS receiver, it was found that a positioning within 20cm 2drms was possible when the length of the baseline was less than 100km and the receiving time of the GPS is more than 30 minutes.

Development of KD- Propeller Series using a New Blade Section (새로운 날개단면을 이용한 KD-프로펠러 씨리즈 개발)

  • J.T. Lee;M.C. Kim;J.W. Ahn;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.52-68
    • /
    • 1991
  • A new propeller series is developed using the newly developed blade section(KH18 section) which behaves better cavitation characteristics and higher lift-drag ratio at wide range of angle-of-attack. The pitch and camber distributions are disigned in order to have the same radial and chordwise loading distribution with the selected circumferentially averaged wake input. Since the geometries of the series propeller, such as chord length, thickness, skew and rate distribations, are selected by regression of the recent full scale propeller geometric data, the performance prediction of a propeller at preliminary design stage can be mure realistic. Number of blades of the series propellers is 4 and the expanded blade area ratios are 0.3, 0.45, 0.6 and 0.75. Mean pitch ratios are selected as 0.5, 0.65, 0.8, 0.75 and 1.1 for each expanded area ratio. The new propeller series is composed of 20 propellers and is named as KD(KRISO-DAEWOO) propeller series. Propeller open water tests are performed at the experimental towing tank, and the cavitation observation tests and fluctuating pressure measurements are carried out at the cavitation tunnel of KRISO. $B_{P}-\delta$ curves, which can be used to select the optimum propeller diameter at the preliminary design stage, are derived from a regression analysis of the propeller often water test results. The KD-cavitation chart is derived from the cavitation observation test results by choosing the local maximum lift coefficient and the local cavitation number as parameters. The caviy extent of a propeller can be predicted more accurately by using the KD-cavitation chart at a preliminary design stage, since it is derived from the results of the cavitation observation tests in the selected ship's wake, whereas the existing cavitation charts, such as the Burrill's cavitation chart, are derived from the test results in uniform flow.

  • PDF

Developing a Traffic Accident Prediction Model for Freeways (고속도로 본선에서의 교통사고 예측모형 개발)

  • Mun, Sung-Ra;Lee, Young-Ihn;Lee, Soo-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.101-116
    • /
    • 2012
  • Accident prediction models have been utilized to predict accident possibilities in existing or projected freeways and to evaluate programs or policies for improving safety. In this study, a traffic accident prediction model for freeways was developed for the above purposes. When selecting variables for the model, the highest priority was on the ease of both collecting data and applying them into the model. The dependent variable was set as the number of total accidents and the number of accidents including casualties in the unit of IC(or JCT). As a result, two models were developed; the overall accident model and the casualty-related accident model. The error structure adjusted to each model was the negative binomial distribution and the Poisson distribution, respectively. Among the two models, a more appropriate model was selected by statistical estimation. Major nine national freeways were selected and five-year dada of 2003~2007 were utilized. Explanatory variables should take on either a predictable value such as traffic volumes or a fixed value with respect to geometric conditions. As a result of the Maximum Likelihood estimation, significant variables of the overall accident model were found to be the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volume to the number of curved segments between ICs(or JCTs). For the casualty-related accident model, the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volumes had a significant impact on the accident. The likelihood ratio test was conducted to verify the spatial and temporal transferability for estimated parameters of each model. It was found that the overall accident model could be transferred only to the road with four or more than six lanes. On the other hand, the casualty-related accident model was transferrable to every road and every time period. In conclusion, the model developed in this study was able to be extended to various applications to establish future plans and evaluate policies.

Comparison of the SNR in the MR images on dental implant material (치아 임플란트 재료에 따른 자기공명영상의 SNR 비교)

  • Kim, Dong-Hyun;Ko, Seong-Jin;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.149-155
    • /
    • 2015
  • Tooth implant is located in oral cavity and affects neck, skull base, and facail image. These magnetic inhomogeneities are usually frequency encoding direction which cause artifacts due to change of signal strength and geometric distortion. First, to evaluate signal to noise ratio (SNR) of magnetic resonance image caused by tooth implant this study uses meat phantom which is similar to human body and is consisted with fat, muscle, and water to measure signal to noise ratio. Second, signal to noise ratio by using custom-made fixed phantom is measured, and then signal to noise ratio size of different tooth implant types is compared and analyzed. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for meat phantom were 2.76, 2.22, 1.88, and 1.57 on T1 SE, 1.88, 1.78, 1.65, and 1.79 on T2 FLAIR, 2.28, 2.25, 2.88, and 2.05 on T2 FSE, and 2.74, 1.94, 1.67, and 1.48 on T2 GRE. The measured signal to noise ratio values of Brushite, HSA, Metal, and RBM for fixed water phantom were 1.2, 1.06, 1.12, and 1.22 on DWI, 1.93, 1.87, 1.93, and 2.06 T1 SE, 1.83, 1.76, 1.82, and 1.92 on T2 FLAIR, 1.85, 1.79, 7.86, and 1.97 on T2 FSE, and 1.97, 1.93, 1.99, and 2.06 on T2 GRE. By considering through the results, patients and dentists need to consider some impacts from testing many aspects although their main purpose of having tooth implants is a dental restoration. Moreover, depending on the tooth implant characteristics of individual patients this study results can be used as baseline data when choosing test protocol.