• Title/Summary/Keyword: Geometric Construction

Search Result 491, Processing Time 0.025 seconds

Discrete construction of generalized derivative functions (일반화된 도함수의 이산적 구현)

  • Kim, Tae-Sik;Kim, Kyung-W.
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • The variation of real phenomena and shape of nature in our world is so complicated that some mathematical tools using the traditional geometric methods based on the Euclidean geometry and analytical differential method may be irrelevant or insufficient in some problems. Recently, to deal with these circumstances, one can use the fractal geometric method. As another measures, in this paper we introduce the non-integral order derivative function for the analytical method and construct to facilitate their calculation.

  • PDF

The Singularity Analysis of the Casing Oscillator (케이싱 오실레이터의 특이점 해석)

  • 남윤주;배형섭;박명관
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.100-108
    • /
    • 2004
  • In this paper, the new casing oscillator, which is a construction machine and which structure is similar to that of a parallel manipulator with redundancy, is proposed. The singularity analysis of this machine is performed by two different methods. First, the singularities are found by the numerical method at configurations where the rank of the Jacobian matrix becomes deficient. The singularities are outside the workspace. To investigate the physical information on these configurations, the singularities are examined by the geometric method at configurations where the casing oscillator cannot resist the external forces and moments applied to the upper platform due to losing static equilibrium. The results of the geometric method are the same as those of the numerical method. It proves that the new casing oscillator is free from the singularity, which causes serious problems to a parallel manipulator.

Development of a Surface Modeling Kernel (곡면 모델링 커널 개발)

  • 전차수;구미정;박세형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.774-778
    • /
    • 1996
  • Developed in this research is a surface modeling kernel for various CAD/CAM applications. Its internal surface representations are rational parametric polynomials, which are generalizations of nonrational Bezier, Ferguson, Coons and NURBS surface, and are very fast in evaluation. The kernel is designed under the OOP concepts and coded in C++ on PCs. The present implementation of the kernel supports surface construction methods, such as point data interpolation, skinning, sweeping and blending. It also has NURBS conversion routines and offers the IGES and ZES format for geometric information exchange. It includes some geometric processing routines, such as surface/surface intersection, curve/surface intersection, curve projection and so forth. We are continuing to work with the kernel and eventually develop a B-Rep based solid modeler.

  • PDF

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

Optimization of Operational and Constitutional Geometric Parameters for Thermoaoustic Energy Output

  • Oh, Seung Jin;Shin, Sang Woong;Chen, Kuan;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The effects of geometric parameters (stack position, stack length, resonator tube length) and varying input power over acoustic energy output were investigated. The acoustic laser kit (Garret 2000) was used for the construction of TA lasers. A series of sound pressure level measurements in different orientations did not differ significantly confirming that the sound wave generated could be assumed as a spherical wave. An increase in acoustic pressure was recorded with respective increase in input power, stack and resonator tube lengths owing to their relative influence over heat transfer rate and critical temperature gradient across the stack.

A Study on the 3D Injection Mold Design Using Unigraphics API (Unigraphics API를 이용한 사출금형의 3차원 설계에 관한 연구)

  • Kim J.H.;Moon C.S.;Hwang Y.K.;Park J.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.381-391
    • /
    • 2005
  • The design methodology of injection molding die has been changed from two-dimensional drafting to three-dimensional solid modeling, which is due to many advantages over the conventional methodology in terms of design modification and data associativity. In addition to the solid modeling capability, it is required for a mold designer to utilize a database management system that facilitates efficient mold design. In the paper presented is the implementation of a software program which automatically generates three-dimensional mold-bases including standard parts and slider parts, conforming to given geometric constraints. It is based on a commercial CAD system (Unigraphics NX) along with related API (application program interface) libraries. The research is expected to reduce design efforts and simplify construction of a complex three-dimensional mold-base model that is comprised of standard parts and slider parts, by use of the three-dimensional database and automatized geometric dimensioning.

Geometric Modelling of 3-Dimensional Structures for Finite Element Analysis (유한요소해석을 위한 3차원 구조물의 기하학적 모델링)

  • 이재영;이진휴
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.109-120
    • /
    • 1991
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierachical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modelling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modelling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

The Characteristice of Safety on a Slope of Pyroclastic Rock (화산쇄설암 사면의 안정 특성)

  • Kim, Byoung-Gon;Park, Sung-Kwon;Choi, Kil-Hyun;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.557-560
    • /
    • 2008
  • In this paper, it discusses about the stability of rock slope of pyroclastic rock, which can easily meet at construction site. Basically carry out the investigation about the development of a surface of discontinuity, too. With that, it refers to the basic groups of sedimentary rock, treats of general details about investigation of rock slope and stability analysis, and discusses general characteristics and stability analysis case study about rock slope of pyroclastic rock. Achieved basic geological investigation on rock slope of pyroclasic rock, and examine the stability of slope by doing limit equilibrium and geometric stability analysis due to the result of investigation. It is considered to be able to accumulate many data about slope design of pyroclastic rock hereafter estimating degrees of rock mass properties of pyroclastic rock quantitatively.

  • PDF

Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model

  • Afshari, Behzad Mohasel;Mirjavadi, Seyed Sajad;Barati, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.13 no.5
    • /
    • pp.377-384
    • /
    • 2022
  • The present paper deals with nonlinear deflection analysis of hyperelastic plates rested on elastic foundation and subject to a transverse point force. For modeling of hyperelastic material, three-parameter Ishihara model has been employed. The plate formulation is based on classic plate theory accounting for von-Karman geometric nonlinearity. Therefore, both material and geometric nonlinearities have been considered based on Ishihara hyperelastic plate model. The governing equations for the plate have been derived based on Hamilton's rule and then solved via Galerkin's method. Obtained results show that material parameters of hyperelastic material play an important role in defection analysis. Also, the effects of foundation parameter and load location on plate deflections will be discussed.