• Title/Summary/Keyword: Geological

Search Result 3,292, Processing Time 0.026 seconds

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity (염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석)

  • Seulgi Lee;Jin Chul Joo;Hee Sun Moon;Dong Hwi Lee;Dong Jun Kim;Jiwon Choi
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

Study on the Characteristics of the Slow-moving Landslide (Landcreep) in the Sanji Valley of Jinju (진주시 산지골 유역내 땅밀림지 특성에 관한 연구)

  • Park, Jae-Hyeon;Kim, Seon Yeop;Lee, Sang Hyeon;Kang, Han Byoel
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.115-124
    • /
    • 2022
  • This study was conducted to obtain basic data that could help prevent damage caused by slow-moving landslides (land-creep). Specifically, the geological, topographic, and physical characteristics of land-creep were analyzed in Jiphyeon-myeon, Jinju-si. The first and second analyzed land-creeps occurred in 1982 and 2019, respectively. The area damaged in the second land-creep was about 11.5-fold larger than that damaged in the first land-creep. The dominant constituent rock in the land-creep area was sedimentary rock, which seems to be weakly resistant to weathering. The areas that collapsed due to land-creep were related to the presence of separated rocks between the bedding plane in the estimated activity surface over the slope direction and the vertically developed joint surface. Thus, surface water and soil debris were introduced through the gaps of separated rocks. Additionally, the areas collapsed due to the combination of the bedding plane and joint surface shale and sandstone showed an onion structure of weathered outcrop from the edge to inner part caused by weathering from ground water. Consequently, core stones were formed. The study area was a typical area of land-creep in a mountain caused by ground water. Land-creep was classified into convex areas of colluvial land-creep. The landslide-risk rating in the study area was classified into three and five classes. The flow of ground water moved to the northeast and coincided with the direction of the collapse. Soil bulk density in the collapsed area was lower than that in ridge area, which was rarely affected by land-creep. Thus, soil bulk density was affected by the soil disturbance in the collapsed area.

Archaeometric Significant and Manufacturing Characteristics of Comb-Pattern Pottery from the Daejuk-ri Shell Midden, Seosan, Korea (서산 대죽리 패총 출토 빗살무늬토기의 제작특성과 고고과학적 의미)

  • AN Deogim;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.138-164
    • /
    • 2022
  • The Neolithic shell midden in Daejuk-ri, Seosan, is distributed on the gentle slope of a low hill close to the west coast. The bedrock of the area consists mainly of schist with various mafic minerals, but shows a partial gneiss pattern. The site consists of loamy topsoil and clay loam subsoil, and the degree of siallization is relatively low. Although the pottery excavated from the shell midden shares mostly similar features, a variety of shapes and patterns coexist. The surface colors, thickness and physical properties are slightly different. The pottery can be subdivided into three types (IA, IB and II) according to the composition of the body clay, the temper and the existence of a black core. Types IA and IB are colorless mineral pottery with a non-black or black core respectively. TypeII is colored mineral pottery with a non-black core. Type I pottery also contains non-plastic colored minerals, but type II contains a large amount of biotite, chlorite, talc, amphibole, diopside and tremolite, which include a large amount of Mg and Fe. The studied pottery contains a small amount of organic matter. Considering the grain size and relatively poor sorting and roundness of the non-plastic particles, the pottery appears to be made by adding coarse non-plastic tempers for special purposes to the untreated weathered soil around the site. The three types of pottery seem to have been incompletely fired in general. While type IB has the lowest degree of oxidation, typeII shows the highest degree of redness and oxidation. It can be interpreted that these differences depend on the firing temperature and the ratio of non-plastic particles. Through a synthesis of the minerals, geochemical data and thermal history, it can be determined that the firing temperature ranged from 600 to 700℃. The pottery types of the Daejuk-ri Shell Midden have slightly different production conditions, mineral compositions, and physical properties, but have undergone similar production processes with basically the same clay materials. The clay is almost identical to the composition of the bedrock and weathered soil distributed in the Daejuk-ri area. Currently, there is an industrial complex in the area, so it is difficult to confirm the soil and geological distribution of the site. However, it is highly probable that the area around the site was self-sufficient for the clay and tempers required for the production of the Neolithic pottery. Therefore, it can be interpreted that the group that left the shell midden in Daejuk-ri lived near the site, visited the site for the purpose of collecting and processing shellfish, and discarded the broken pottery along with shells.

Weights for Evaluation items of Conformity index of Bird breeding sites on the West and South coasts of Korea (서·남해 연안성 조류번식지 적합성지수 평가항목 가중치 설정)

  • Kim, Chang-Hyeon;Kim, Won-Bin;Kim, Kyou-Sub;Lee, Chang-Hun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.4
    • /
    • pp.40-48
    • /
    • 2023
  • This study is part of a foundational research effort aimed at developing a suitability index for breeding grounds related to avian activities along the domestic South and West coasts, including islands. Focus Group Interviews (FGI) and Analytic Hierarchy Process (AHP) analyses were conducted. The results are as follows. First, as a result of determining the value of the suitability of coastal bird breeding sites, the 'Natural Value(0.763)' was higher than the 'Artificial Value(0.237)'. Other artificial values were identified as sub-ranked except for 'Protected Areas' to ensure continuous integrity of breeding spaces. Second, as a result of re-establishing the 25 evaluation items classified in the two-time FGI as higher concepts, nine natural values and five artificial values were finally selected as a total of 14. Third, the results of the mid-classification evaluation of the importance of the suitability of coastal bird breeding sites were identified in the order of 'Ecological Value(0.392)', 'Topographic Value(0.251)', 'Passive Interference(0.124)', 'Geological Value(0.120)', and 'Active Interference(0.113)'. Fourth, the results of the priority of evaluation items of coastal bird breeding sites were in the order of 'Vegetation Distribution (0.187)', 'Area of Mudflats(0.118)', 'Presence or Absence of Mudflats(0.092)', 'Appearance of Natural Enemies(0.087)', 'Protected Areas(0.08)', 'Island Area (0.069)', 'Over-Breeding devastation(0.064)', 'Soil Composition Ratio(0.056)', 'Distance from Land(0.054)', 'Ocean farm area (0.045)', 'Cultivated land area(0.041)', 'Cultivation behavior(0.038)', 'Angle of the Surface(0.036)', and 'Land Use(0.033)'. It is judged that the weighting result value of the evaluation items derived in this study can be used for priority evaluation focusing on the coastal bird breeding area space. However, it seems that the correlation with the unique habitat suitability of bird individuals needs to be supplemented, and spatial analysis research incorporating species-specific characteristics will be left as a future task.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Seismic Facies Classification of Igneous Bodies in the Gunsan Basin, Yellow Sea, Korea (탄성파 반사상에 따른 서해 군산분지 화성암 분류)

  • Yun-Hui Je;Ha-Young Sim;Hoon-Young Song;Sung-Ho Choi;Gi-Bom Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.136-146
    • /
    • 2024
  • This paper introduces the seismic facies classification and mapping of igneous bodies found in the sedimentary sequences of the Yellow Sea shelf area of Korea. In the research area, six extrusive and three intrusive types of igneous bodies were found in the Late Cretaceous, Eocene, Early Miocene, and Quaternary sedimentary sequences of the northeastern, southwestern and southeastern sags of the Gunsan Basin. Extrusive igneous bodies include the following six facies: (1) monogenetic volcano (E.mono) showing cone-shape external geometry with height less than 200 m, which may have originated from a single monogenetic eruption; (2) complex volcano (E.comp) marked by clustered monogenetic cones with height less than 500 m; (3) stratovolcano (E.strato) referring to internally stratified lofty volcanic edifices with height greater than 1 km and diameter more than 15 km; (4) fissure volcanics (E.fissure) marked by high-amplitude and discontinuous reflectors in association with normal faults that cut the acoustic basement; (5) maar-diatreme (E.maar) referring to gentle-sloped low-profile volcanic edifices with less than 2 km-wide vent-shape zones inside; and (6) hydrothermal vents (E.vent) marked by upright pipe-shape or funnel-shape structures disturbing sedimentary sequence with diameter less than 2 km. Intrusive igneous bodies include the following three facies: (1) dike and sill (I.dike/sill) showing variable horizontal, step-wise, or saucer-shaped intrusive geometries; (2) stock (I.stock) marked by pillar- or horn-shaped bodies with a kilometer-wide intrusion diameter; and (3) batholith and laccoliths (I.batho/lac) which refer to gigantic intrusive bodies that broadly deformed the overlying sedimentary sequence.

Hydrochemistry, Isotopic Characteristics, and Formation Model Geothermal Waters in Dongrae, Busan, South Korea (부산 동래 온천수의 수리화학 및 동위원소 특성, 생성모델 연구)

  • Yujin Lee;Chanho Jeong;Yongcheon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.229-248
    • /
    • 2024
  • This investigated the hydrogeochemical and isotopic characteristics of geothermal waters, groundwaters, and surface waters in Dongrae-gu, Busan, South Korea, in order to determine the origins of the salinity components in the geothermal waters, and their formation mechanisms and heat sources The geothermal waters are Na-Cl-type, distinct from surrounding groundwaters (Na-HCO3- and, Ca-HCO3- (SO4, Cl)-type) and surface waters (Ca-HCO3(SO4, Cl)-type). This indicates the geothermal waters formed at depth as compared with the groundwaters. δ18O and δD values of the geothermal waters are relatively depleted as compared with the groundwaters, due to altitude effects and deep circulation of the geothermal waters. Helium and neon isotope ratios (3 He/4He and, 4He/20Ne) of the geothermal waters plot on a single mixing line between mantle (3He = 3.76~4.01%) and crust (4He = 95.99~96.24 %), indirectly suggesting that the heat source is due to the decay of radioactive elements in rocks. The geothermal reservoir temperatures were calculated using the silica-enthalpy and Giggenbach models, yielding values of 82~130℃, and the depth of the geothermal reservoir is estimated to be 1.7~2.9 km below the surface. The correlation between Cl/Na and Cl/HCO3 for the Dongrae geothermal waters requires the input of salty water. The supply of saline composition is interpreted due to the dissolution of residual paleo-seawater.

Spatio-Temporal Monitoring of Soil CO2 Fluxes and Concentrations after Artificial CO2 Release (인위적 CO2 누출에 따른 토양 CO2 플럭스와 농도의 시공간적 모니터링)

  • Kim, Hyun-Jun;Han, Seung Hyun;Kim, Seongjun;Yun, Hyeon Min;Jun, Seong-Chun;Son, Yowhan
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2017
  • CCS (Carbon Capture and Storage) is a technical process to capture $CO_2$ from industrial and energy-based sources, to transfer and sequestrate impressed $CO_2$ in geological formations, oceans, or mineral carbonates. However, potential $CO_2$ leakage exists and causes environmental problems. Thus, this study was conducted to analyze the spatial and temporal variations of $CO_2$ fluxes and concentrations after artificial $CO_2$ release. The Environmental Impact Evaluation Test Facility (EIT) was built in Eumseong, Korea in 2015. Approximately 34kg $CO_2$ /day/zone were injected at Zones 2, 3, and 4 among the total of 5 zones from October 26 to 30, 2015. $CO_2$ fluxes were measured every 30 minutes at the surface at 0m, 1.5m, 2.5m, and 10m from the $CO_2$ releasing well using LI-8100A until November 13, 2015, and $CO_2$ concentrations were measured once a day at 15cm, 30cm, and 60cm depths at every 0m, 1.5m, 2.5m, 5m, and 10m from the well using GA5000 until November 28, 2015. $CO_2$ flux at 0m from the well started increasing on the fifth day after $CO_2$ release started, and continued to increase until November 13 even though the artificial $CO_2$ release stopped. $CO_2$ fluxes measured at 2.5m, 5.0m, and 10m from the well were not significantly different with each other. On the other hand, soil $CO_2$ concentration was shown as 38.4% at 60cm depth at 0m from the well in Zone 3 on the next day after $CO_2$ release started. Soil $CO_2$ was horizontally spreaded overtime, and detected up to 5m away from the well in all zones until $CO_2$ release stopped. Also, soil $CO_2$ concentrations at 30cm and 60cm depths at 0m from the well were measured similarly as $50.6{\pm}25.4%$ and $55.3{\pm}25.6%$, respectively, followed by 30cm depth ($31.3{\pm}17.2%$) which was significantly lower than those measured at the other depths on the final day of $CO_2$ release period. Soil $CO_2$ concentrations at all depths in all zones were gradually decreased for about 1 month after $CO_2$ release stopped, but still higher than those of the first day after $CO_2$ release stared. In conclusion, the closer the distance from the well and the deeper the depth, the higher $CO_2$ fluxes and concentrations occurred. Also, long-term monitoring should be required because the leaked $CO_2$ gas can remains in the soil for a long time even if the leakage stopped.

Distributional Characteristics of Fault Segments in Cretaceous and Tertiary Rocks from Southeastern Gyeongsang Basin (경상분지 남동부 일대의 백악기 및 제3기 암류에서 발달하는 단층분절의 분포특성)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.109-120
    • /
    • 2018
  • The distributional characteristics of fault segments in Cretaceous and Tertiary rocks from southeastern Gyeongsang Basin were derived. The 267 sets of fault segments showing linear type were extracted from the curved fault lines delineated on the regional geological map. First, the directional angle(${\theta}$)-length(L) chart for the whole fault segments was made. From the related chart, the general d istribution pattern of fault segments was derived. The distribution curve in the chart was divided into four sections according to its overall shape. NNE, NNW and WNW directions, corresponding to the peaks of the above sections, indicate those of the Yangsan, Ulsan and Gaeum fault systems. The fault segment population show near symmetrical distribution with respect to $N19^{\circ}E$ direction corresponding to the maximum peak. Second, the directional angle-frequency(N), mean length(Lm), total length(Lt) and density(${\rho}$) chart was made. From the related chart, whole domain of the above chart was divided into 19 domains in terms of the phases of the distribution curve. The directions corresponding to the peaks of the above domains suggest the directions of representative stresses acted on rock body. Third, the length-cumulative frequency graphs for the 18 sub-populations were made. From the related chart, the value of exponent(${\lambda}$) increase in the clockwise direction($N10{\sim}20^{\circ}E{\rightarrow}N50{\sim}60^{\circ}E$) and counterclockwise direction ($N10{\sim}20^{\circ}W{\rightarrow}N50{\sim}60^{\circ}W$). On the other hand, the width of distribution of lengths and mean length decrease. The chart for the above sub-populations having mutually different evolution characteristics, reveals a cross section of evolutionary process. Fourth, the general distribution chart for the 18 graphs was made. From the related chart, the above graphs were classified into five groups(A~E) according to the distribution area. The lengths of fault segments increase in order of group E ($N80{\sim}90^{\circ}E{\cdot}N70{\sim}80^{\circ}E{\cdot}N80{\sim}90^{\circ}W{\cdot}N50{\sim}60^{\circ}W{\cdot}N30{\sim}40^{\circ}W{\cdot}N40{\sim}50^{\circ}W$) < D ($N70{\sim}80^{\circ}W{\cdot}N60{\sim}70^{\circ}W{\cdot}N60{\sim}70^{\circ}E{\cdot}N50{\sim}60^{\circ}E{\cdot}N40{\sim}50^{\circ}E{\cdot}N0{\sim}10^{\circ}W$) < C ($N20{\sim}30^{\circ}W{\cdot}N10{\sim}20^{\circ}W$) < B ($N0{\sim}10^{\circ}E{\cdot}N30{\sim}40^{\circ}E$) < A ($N20{\sim}30^{\circ}E{\cdot}N10{\sim}20^{\circ}E$). Especially the forms of graph gradually transition from a uniform distribution to an exponential one. Lastly, the values of the six parameters for fault-segment length were divided into five groups. Among the six parameters, mean length and length of the longest fault segment decrease in the order of group III ($N10^{\circ}W{\sim}N20^{\circ}E$) > IV ($N20{\sim}60^{\circ}E$) > II ($N10{\sim}60^{\circ}W$) > I ($N60{\sim}90^{\circ}W$) > V ($N60{\sim}90^{\circ}E$). Frequency, longest length, total length, mean length and density of fault segments, belonging to group V, show the lowest values. The above order of arrangement among five groups suggests the interrelationship with the relative formation ages of fault segments.