DOI QR코드

DOI QR Code

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation

베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화

  • Kim, Sung-Han (Division of Earth Environmental System, Pusan National University) ;
  • Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Shin, Hye-Sun (Division of Earth Environmental System, Pusan National University) ;
  • Uchida, Masao (National Institute for Environmental Studies) ;
  • Itaki, Takuya (Geological Survey of Japan) ;
  • Ohkushi, Kenichi (Faculty of Human Development, Kobe University)
  • 김성한 (부산대학교 지구환경시스템학부) ;
  • 김부근 (부산대학교 지구환경시스템학부) ;
  • 신혜선 (부산대학교 지구환경시스템학부) ;
  • ;
  • ;
  • Published : 2009.08.31

Abstract

Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

베링해 중부 지역에서 획득된 피스톤 코아 PC23A의 퇴적물에서 오팔과 총유기탄소의 함량을 측정하고 집적률을 계산하여 마지막 빙하기 이후의 고생산성 변화를 살펴보았다. 코아 PC23A의 연대는 부유성 유공충의 AMS $^{14}C$ 탄소연대와 방산충 L. nipponica sakaii의 마지막 출현 기준에 의해서 결정되어있으며, 코아 최하단부가 약 61,000년 전으로 계산되었고, 코아 상부는 일부 손실된 것으로 판단된다. 오팔과 총유기탄소 함량은 마지막 빙하기 동안 각각 1-10%, 0.2-1.0%의 범위에서 변동하였으며, 각각 5%와 0.7%의 평균값을 보였다. 반면, 후빙기 동안에 오팔과 총유기탄소 함량은 5-22%, 0.8-1.2%의 범위에서 변동하였으며, 평균값은 각각 8%와 1.0%로 증가된 값을 보여주었다. 마찬가지로 오팔과 총유기탄소의 집적률도 마지막 빙하기($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$)동안 보다 후빙기 동안(>$5gcm^{-2}kyr^{-1}$, >$1gcm^{-2}kyr^{-1}$)에 증가하였다. 후빙기 동안 증가된 생산성은 온난한 기후에서 해빙의 발달이 미비하고 높아진 해수면 조건에서 주변 육상으로부터 융빙수의 유입 증가와 남쪽으로부터 알라스카 해류 유입의 증가에 의하여 영양염 공급이 충분한 환경에서 규조류가 번성하였기 때문이다. 반면, 마지막 빙하기 동안에는 낮아진 해수면으로 인하여 알라스카 해류의 유입이 감소하여 영양염의 공급이 제한되고, 낮은 수온과 추운 기후로 인해 광범위하게 발달한 해빙에 의해서 생산성이 감소되었다.

Keywords

References

  1. Banahan, S. and J.J. Goering, 1986. The production of biogenic silica and its accurnulation on the southeastem Bering Sea shelf. Cont. Shelf Res., 5: 199-213 https://doi.org/10.1016/0278-4343(86)90015-4
  2. Barber, R.T. and F.P. Chavez, 1991. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr., 36: 1803-1815 https://doi.org/10.4319/lo.1991.36.8.1803
  3. Bamola, J.M., D. Raynaud, Y.S. Korotkevich and C. Lorius, 1987. Vostok ice core provides 160,000-year record of atmospheric $CO_2$. Nature, 329: 408-414 https://doi.org/10.1038/329408a0
  4. Blueford, J.R., 1983. Distribution of Quatemary radiolaria in the Navarin Basin geologic province, Bering Sea. Deep-Sea Res., 30:763-781 https://doi.org/10.1016/0198-0149(83)90021-3
  5. Brunelle, B.G, D.M. Sigman, M.S. Cook, L.D. Keigwin, GH. Haug, B. Plessen, G Schettler and S.L. Jaccard, 2007. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22: PA1215, doi:10.1029/2005PA001205
  6. Cook, M.S., L.D. Keigwin and C.A. Sancetta, 2005. the deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res.II, 52: 2163-2173 https://doi.org/10.1016/j.dsr2.2005.07.004
  7. de Vemal, A. and T.F. Pedersen, 1997. Micropaleontology and palynology of core PAR 87 A-lO: a 30,000 year record of paleoenvironmental changes in the Gulf of Alaska, Northeast Pacific. Paleoceanography,12: 821-830 https://doi.org/10.1029/97PA02167
  8. Falkowski, P.G, 1997. Evolution ofthe nitrogen cycle and its influence on the biological sequestration of $CO_2$ in the ocean. Nature, 387, 272-275 https://doi.org/10.1038/387272a0
  9. Feely, R.A., C.L. Sabine, K. Lee, F.J. Millero, M.F. Lamb, D. Greeley, J.L. Bullister, R.M. Key, T.-H. Peng, A. Kozyr, T. Ono and C.S. Wong, 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem. Cycles, 16: doi: 10.1029/2002GBOO 1866
  10. Geen, A., Y. Zheng, J.M. Bernhard, K.G Cannariato, J. Carriquiry, W.E. Dean, B.W. Eakins, J.D. Ortiz and J. Pike, 2003. . Paleoceanography, 18: doi: lO.l029/2003PA000911 https://doi.org/10.1029/2003PA000911
  11. Goll, R.M. and K.R. Bjorklund, 1974. Radiolaria in surface sediments of the South Atlantic. Micropaleontology, 20: 38-75 https://doi.org/10.2307/1485099
  12. Gorbarenko, S.A., I.A. Basov, M.P. Chekhovskaya, J. Southon, T.A Khusid and A.V. Artemova, 2005. Orbital and millenniurn scale environmental changes in the southem Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence. DeepSea Res. II, 52: 2174-2185 https://doi.org/10.1016/j.dsr2.2005.08.005
  13. Grebmeier, J.M., J.E. Overland, S.E. Moore, E.Y. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, J.H. Helle, F.A. McLaughlin and S.L. McNutt, 2006. A major ecosystem shift in the northem Bering Sea. Science, 311: 1461-1464 https://doi.org/10.1126/science.1121365
  14. Hays, J.D. and J.J. Morley, 2003. The Sea of Okhotsk: A window on the ice age ocean. Deep-Sea Res., 50: 1481-1506 https://doi.org/10.1016/j.dsr.2003.08.002
  15. Honjo, S., S.J. Manganini and J.J. Cole, 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res., 29: 609-625 https://doi.org/10.1016/0198-0149(82)90079-6
  16. Hood, D.W., 1983. The Bering Sea. In: Estuaries and enclosed Seas, edited by Ketchum, B.H., Elsevier Sci. Pub. Co. pp. 337-373
  17. Itaki, T., 2006. Eltoriation technique for extracting radiolarian skeletons from sandy sediments and its usefulness for faunal analysis. Radiolaria, 24: 14-18
  18. Itaki,T. N. Komatsu and I Motoyama, 2007. Orbial-and millennial-scale changes of radiolarian assembiages during the last 220 kyrs in the Japan Sea. Palaeoclimatol. PALAECOL., 247: 115-130 https://doi.org/10.1016/j.palaeo.2006.11.025
  19. Itaki, T.,M. Uchida, B.K. Khim, S. Kim, H.S. Shin and R. Tada, in press. Late Pleistocene strigraphy and paleoceanography in the northern Bering Sea slope: evidence from radiolarian species Cycladophora davisiana. J. Quat. Sci
  20. Katsuki, K. and K. Takahashi, 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52: 2110-2130 https://doi.org/10.1016/j.dsr2.2005.07.001
  21. Kawahata, H., T. Okamoto, E. Matsumoto and H. Ujiie, 2000.Fluctuation of eolian flux and ocean productivity in the mid-latitude North Pacific during the last 200 kyr. Quat. Sci. Rev., 19: 1279-1291 https://doi.org/10.1016/S0277-3791(99)00096-7
  22. Khim, B.K., J.J. Bahk, S. Hyun and GH. Lee, 2007. Late Pleistocene dark laminated mud layers from the Korea Plateau, westem East Sea/Japan Sea and their paleoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247: 74-87 https://doi.org/10.1016/j.palaeo.2006.11.029
  23. Kinder, T.H., L.K. Goachman and J.A. Galt, 1975. The Bering slope current system. J. Phys. Oceanogr., 5: 231-244 https://doi.org/10.1175/1520-0485(1975)005<0231:TBSCS>2.0.CO;2
  24. Kitani, K., 1973. An oceanographic study of the Okhotsk Sea: particularly in regard to cold waters. Bulletin of Far Sea Fish Res. Laborat., 9: 45-77
  25. Ling, H.Y., 1973. Radiolaria: Leg 19 of the Deep Sea Drilling Project. In: lnitial Reports of the Deep Sea Drilling Project, 19, edited by Creager, J.S., D.W Scholl, et al., US Govemment Printing Office, Washington, pp. 777-797
  26. Liu, Y.J., S.R. Song, T.Q. Lee, M.Y. Lee, Y.L. Chen and H.F. Chen, 2006. Mineralogical and geochemical changes in the sediments of the Okhotsk Sea during deglacial periods in the past 500 kyrs. Global Planet. Change, 53: 47-57 https://doi.org/10.1016/j.gloplacha.2006.01.007
  27. Loughlin, T.R. and K. Ohtani, 1999. Dynamics of the Bering Sea. Univ. Alaska Sea Grant, Fairbanks, pp. 1-825
  28. Martinson, D.G, N.G Pisias, J.D. Hays, J. Imbrie, T.C. Moore and N.J. Shackleton, 1987. Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27: 1-29 https://doi.org/10.1016/0033-5894(87)90046-9
  29. Morley, J.J. and J.D. Hays, 1983. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett., 66: 63-77 https://doi.org/10.1016/0012-821X(83)90126-7
  30. Morley, J.J. and S.W Robinson, 1986. Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous geochemical statigraphy. Deep-Sea Res., 33(9): 1203-1211. https://doi.org/10.1016/0198-0149(86)90020-8
  31. Morley, J.J. V.L. Tiase, M.M. Ashby and M. Kashgarian, 1995. A high-resolution stratigraphy for Pleistocene sediments from North Pacific Sites 881, 883, and 887 based on abundance variations of the radiolarian Cycladophora davìsiana. In: Proceedings of the Ocean Drilling program, Scientific Results, 145, edited by Rea, D.K., I.A. Basov, D.W Scholl and J .F. Allan, Ocean Drilling Program, College Station, XT, pp. 133-140
  32. Morley, J.J., J.D. Hays and J.H. Robertson, 1982, Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep-Sea Res., 29: 1485-1499 https://doi.org/10.1016/0198-0149(82)90038-3
  33. Mortlock, R.A. and P.N. Froelich, 1989. A simple method for the ripid determination of of opal in pelagic marine sediments. Deep Sea Res., 36:1415-1426 https://doi.org/10.1016/0198-0149(89)90092-7
  34. Muller, P.J. and R. Schnide, 1993. An automated leaching method for the rapid determination of opal in pelagic marine sediments. Deep Sea Res., 36: 1415-1426 https://doi.org/10.1016/0967-0637(93)90140-X
  35. Nakatsuka, T., K. Watanabe, N. Handa, E. Matsumoto and E. Wada 1995. Glacial to interglacial surface nutrient variations of Bering deep basins recorded by $\delta^{13}C$ and $\delta^{15}N$ of sedimentary organic matter. Paleoceanography, 10: 1047-1061 https://doi.org/10.1029/95PA02644
  36. Narita, H., M. Sato, S. Tsunogai, M. Murayama, M. Ikehara, T.Nakasuka, M. Wakatsuchi, N. Harada and Y. Ujiie, 2002. Biogenic opal indicating less productive northwestem North Pacific during the glaciaI ages. Geophys. Res. Lett., 29: 1732, doi: lO.l029/200IGL014320 https://doi.org/10.1029/2001GL014320
  37. Niebauer, H.J., 1998. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J. Geophys. Res., 103: 27717-27737 https://doi.org/10.1029/98JC02499
  38. Niebauer, H.J., N.A. Bond, L.P. Yakunin and V.V. Plotnikov, 1999 An update on the climatology and sea ice of the Bering Sea. ln: Dynamics of the Bering Sea, edited by Loughlin, T.R. and K Ohtani, Univ. Alaska Sea Grant, Fairbanks, pp. 29-59
  39. Nimmergut, A. and A. Abelmann, 2002. Spatial and seasonaI changes of radiolarian standing stocks in the Sea of Okhotsk. Deep-Sea Res. I, 49: 463-493 https://doi.org/10.1016/S0967-0637(01)00074-7
  40. Oba, T., M. Kato, H. Kitazato, I. Koizumi, A. Omura, T. Sakai and T. Takayama, 1991. Paleoenvironmental changes in the Japan Sea during last 85 ,000 years. Paleoceanography, 6: 499-518 https://doi.org/10.1029/91PA00560
  41. Ohkushi, K., T. Itaki and N. Nemoto, 2003. Last glacial-Holocene change in intermediate-water ventilation in the Northwestem Pacific. Quat. Sci. Rev., 22: 1477-1484 https://doi.org/10.1016/S0277-3791(03)00082-9
  42. Okada, M., M. Takagi, H. Narita and K. TakaImshi, 2005. Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paIeomagnetic and oxyglen isotopic anaIyses. Deep-Sea Res. II, 52: 2092-2109 https://doi.org/10.1016/j.dsr2.2005.08.004
  43. Okazaki, Y., K. Takahashi, H. Asahi, K. Katsuki, J. Hori, H. Yasuda, Y. Sagawa and H. Tokuyama, 2005. Productivity changes in the Bering Sea during the late Quatemary. Deep-Sea Res. II, 52: 2150-2162 https://doi.org/10.1016/j.dsr2.2005.07.003
  44. Okkonen, S.R., GM. Schmidt, E.D. Cokelet and P.J. Stabεno, 2004. Satellite and hydrographic observations of the Bering Sea 'Green Belt'. Deep-Sea Res. Il, 51: 1033-1051 https://doi.org/10.1016/j.dsr2.2003.08.005
  45. Petit, J.R., J. Jouzel, D. Raynaud, N.l. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman and M. Stievenard, 1999. Climate and atrnospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436 https://doi.org/10.1038/20859
  46. Round, F.E., R.M. Crawford and D.G Mann, 1990. The diatoms: biology and morphology of the genera. Cambridge Univ. Press, Cambridge, 747 pp
  47. Sabin, A.L. and N.G Pisias, 1996. Sea surface temperature changes in the northwestem Pacific Ocean during the past 20,000 years and their relationship to climate change in northwestem North America. Quat. Res., 46: 48-61 https://doi.org/10.1006/qres.1996.0043
  48. Sancetta, C., 1983. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Ses Res., 30: 851-869 https://doi.org/10.1016/0198-0149(83)90004-3
  49. Sancetta, C., L. Heusser, L. Labeyrie, S.A. Naidu and S.W. Robinson, 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62:55-68 https://doi.org/10.1016/0025-3227(84)90054-9
  50. Springer, A.M., C.P. McRoy and M.V.Flint, 1996. The Bering Sea Green Belt:shelf-edge processes and ecosystem production. Fish Oceanogr., 5: 205-223 https://doi.org/10.1111/j.1365-2419.1996.tb00118.x
  51. Stabeno, P.J., J.D. Schumacher and K. Ohtani, 1999. The physical oceanography of the Bering Sea. In; Dynamics of the Bering Sea,edited by Loughlin, T.R. and K. Ohtani, Univ. Alaska Sea Grant, Fairbanks, pp. 1-28
  52. Stuiver, M., P.J. Peimer and T.F. Braziunas, 1998. High-preceision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40: 1127-1151 https://doi.org/10.1017/S0033822200019172
  53. Takahashi, K., 1998. The Bering and Okhotsk Sea: modem and Past paleoceanographic changes and gateway impact. J. Asian Earth Sci.,16: 49-58 https://doi.org/10.1016/S0743-9547(97)00048-2
  54. Takahashi, K., N. Fujitani and N. Yanada, 2002. Long term monitoring of particle fluxes in the Bering Sea and the central the central subarctic Pacific Ocean, 1990-2000. Prog. Oceanogr., 55: 95-112 https://doi.org/10.1016/S0079-6611(02)00072-1
  55. Tanaka, S. and K. Takahshi, 2005. Late Quatemary paleoceanographic changes in the Bering sea and the westem subarctic Pacific based on radiolarian assemblage. Deep-Sea Res. II, 52: 2131-2149 https://doi.org/10.1016/j.dsr2.2005.07.002
  56. Taniguchi, A., 1999. Differences in the structure ofthe lower trophic levels of pelagic ecosystems in the eastem and westem subarctic Pacific. Progr. Oceanogr., 43: 289-315 https://doi.org/10.1016/S0079-6611(99)00011-7
  57. Thomas, E., K.K. Turekian and K.-Y. Wei, 2000. Productivity control of fine particle transport to equatorial Pacific sediment. Global Biogeochem. Cycles, 14: 945-955 https://doi.org/10.1029/1998GB001102
  58. Zhang, J., P. Wang, Q. Li, X. Cheng, H. Jin and S. Zhang, 2007. Westem equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminideral and nannofossil evidence from ODP Hole 807A. Mar. Micropaleontol., 64: 121-140 https://doi.org/10.1016/j.marmicro.2007.03.003
  59. Zheng, Y., A. Geen and R.F. Anderson, 2000. Intensification of the northeast Pacific oxygen minimun zone during the Bollig-Allerd warm period. Paleoceanography, 15: 528-536 https://doi.org/10.1029/1999PA000473