DOI QR코드

DOI QR Code

Analysis of Nitrogen and Phosphorus Benthic Diffusive Fluxes from Sediments with Different Levels of Salinity

염분농도에 따른 호소 퇴적물 내 질소 및 인 용출 특성 분석

  • Seulgi Lee (Department of Environmental Engineering, Hanbat National University) ;
  • Jin Chul Joo (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Hee Sun Moon (Groundwater Research Center, Climate Change Response Division, Geological Environment Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Dong Hwi Lee (Water & Environment) ;
  • Dong Jun Kim (Department of Environmental Engineering, Hanbat National University) ;
  • Jiwon Choi (Department of Environmental Engineering, Hanbat National University)
  • 이슬기 (한밭대학교 환경공학과) ;
  • 주진철 (한밭대학교 건설환경공학과) ;
  • 문희선 (한국지질자원연구원 기후변화대응연구본부 지하수연구센터) ;
  • 이동휘 ((주)물과 환경) ;
  • 김동준 (한밭대학교 환경공학과) ;
  • 최지원 (한밭대학교 환경공학과)
  • Received : 2023.09.11
  • Accepted : 2023.09.25
  • Published : 2023.09.30

Abstract

The study involved the categorization of domestic lakes located in South Korea into three groups based on their salinity levels: upstream reservoirs with salinity less than 0.3 psu, estuarine reservoirs with salinity ranging from 0.3 to 2 psu, and brackish lagoons with salinity exceeding 2 psu. Subsequently, the research assessed variations in the concentrations of total nitrogen (T-N) and total phosphorus (T-P) in the sediment of these lakes using statistical analysis, specifically one-way analysis of variance (ANOVA). Additionally, a laboratory core incubation test was conducted to investigate the benthic nutrient fluxes in Songji lagoon (salinity: 11.80 psu), Ganwol reservoir (salinity: 0.73 psu), and Janggun reservoir (salinity: 0.08 psu) under both aerobic and anoxic conditions. The findings revealed statistically significant differences in the concentrations of T-N and T-P among sediments in the lakes with varying salinity levels (p<0.05). Further post-hoc analysis confirmed significant distinctions in T-N between upstream reservoirs and estuarine reservoirs (p<0.001), as well as between upstream reservoirs and brackish lagoons (p<0.01). For T-P, a significant difference was observed between upstream reservoirs and brackish lagoons (p<0.01). Regarding benthic nutrient fluxes, Ganwol Lake exhibited the highest diffusive flux of NH4+-N, primarily due to its physical characteristics and the inhibition of nitrification resulting from its relatively high salinity. The flux of NO3--N was lower at higher salinity levels under aerobic conditions but increased under anoxic conditions, attributed to the impact of salinity on nitrification and denitrification. Additionally, the flux of PO43--P was highest in Songji Lake, followed by Ganwol Lake and Janggun Reservoir, indicating that salinity promotes the diffusive flux of phosphate through anion adsorption competition. It's important to consider the influence of salinity on microbial communities, growth rates, oxidation-reduction processes, and nutrient binding forms when studying benthic diffusive nutrient fluxes from lake sediments.

국내 호소를 상류 저수지 (<0.3 psu), 하구 저수지 (0.3 - 2 psu), 기수성 석호 (>2 psu)로 분류하여 호소별 퇴적물 총질소 (T-N), 총인 (T-P) 농도의 차이를 일원분산분석 (ANOVA) 하였으며, 실험실 코어 배양법 (laboratory core incubation)을 이용해 송지호 (11.80 psu), 간월호 (0.73 psu), 장군 저수지 (0.08 psu)의 호기 (aerobic)와 무산소 (anoxic) 조건에서의 질소 및 인 용출량 (benthic nutrient flux)을 측정하였다. 국내 호소의 퇴적물 내 총질소와 총인 농도는 염분 농도가 다른 호소별로 유의한 차이가 있는 것으로 분석되었다 (p<0.05). 사후 검정 (post-hoc)을 통해 총질소의 경우 상류 저수지 (2,918 mg/kg)와 하구 저수지 (2,094 mg/kg)에서 유의한 차이를 확인하였고 (p<0.001), 총인의 경우 상류 저수지 (789 mg/kg)와 기수성 석호 (533 mg/kg)가 유의한 차이를 보였다 (p<0.01). 실험을 통해 산정된 NH4+-N의 용출량은 간월호에서 가장 높게 나타났으며, 폐쇄성 수역인 물리적인 특성과 염분으로 인한 질산화의 저해 등에 의한 것으로 판단된다. NO3--N의 용출량은 호기 조건에서 염분이 높은 호소일수록 낮게 나타났으나 무산소 조건에서는 염분이 높은 호소일수록 용출량이 높게 관측되었고, 이는 염분이 질산화 및 탈질이 억제되었기 때문이다. PO43--P의 경우 송지호, 간월호, 장군 저수지 순으로 용출량이 높게 나타나, 염분이 음이온 흡착 경쟁 등을 통해 인산염의 용출을 촉진시키는 것으로 조사되었다. 퇴적물의 용출량 산출 시 미생물 군집, 성장률, 산화, 환원, 영양염류의 결합 형태 등의 요인이 염분에 의해 영향을 받으므로 염분화 된 호소의 퇴적물 용출 조사 시 염분에 의한 영향을 고려해야 할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 기본사업의 연구비 지원 (22-3411-위탁1)에 의해 수행되었습니다

References

  1. Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B., and Liu, X. 2017. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 188: 677-688. https://doi.org/10.1016/j.chemosphere.2017.08.117
  2. Beck, B.R., Holzapfel, W., Hwang, C.W., and Do, H.K. 2013. Bacterial community structure shift driven by salinity: analysis of DGGE band patterns from freshwater to seawater of Hyeongsan River. Journal of Life Science 23, 406-414. https://doi.org/10.5352/JLS.2013.23.3.406
  3. Berg, P., Huettel, M., Glud, R.N., Reimers, C.E., and Attard, K.M. 2022. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments. Annual Review of Marine Science 14: 431-455. https://doi.org/10.1146/annurev-marine-042121-012329
  4. Chin, B.S., Hwang, I.S., Kim, Y.N., Koh, B.S., Yoo, J.K., Jung, H.I., ... and Park, G.S. 2019. A Preliminary Study on the Establishment of Background Levels and Management Targets in the Coastal Ecosystem of Korean Peninsula Using Outlier Test. The Sea Journal of the Korean Society of Oceanography 24: 170-186. (in Korean)
  5. Choi, J.H. 2015. A study on the sediment characteristic of eastern coastal lagoons in South Korea (Masters dissertation). Kangwon National University. (in Korean)
  6. Dijkstra, N., Kraal, P., Seguret, M.J.M., Flores, M.R., Gonzalez, S., Rijkenberg, M.J., and Slomp, C.P. 2018. Phosphorus dynamics in and below the redoxcline in the Black Sea and implications for phosphorus burial. Geochimica et Cosmochimica Acta 222: 685-703. https://doi.org/10.1016/j.gca.2017.11.016
  7. Duan, S. and Kaushal, S.S. 2015. Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences 12: 7331-7347. https://doi.org/10.5194/bg-12-7331-2015
  8. Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q., and Chen, Q. 2023. Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environmental Research 225: 115590.
  9. Flores-Alsina, X., Solon, K., Mbamba, C.K., Tait, S., Gernaey, K.V., Jeppsson, U., and Batstone, D.J. 2016. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Research 95: 370-382. https://doi.org/10.1016/j.watres.2016.03.012
  10. Gardner, W.S., Seitzinger, S.P., and Malczyk, J.M. 1991. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: does ion pairing affect ammonium flux?. Estuaries 14: 157-166. https://doi.org/10.2307/1351689
  11. Go, H.W., Joo, J.C., Lee, D.H., Ahn, C.M., Choi, S.H., and Kang, E.T. 2021. Statistical Analysis and Review of Event Mean Concentrations in Stormwater Runoff from Agricultural Nonpoint Source Pollution among Different Land Use Types. Journal of Korean Society of Environmental Engineers 43: 664-678. (in Korean) https://doi.org/10.4491/KSEE.2021.43.10.664
  12. Hu, M., Le, Y., Sardans, J., Yan, R., Zhong, Y., Sun, D., ... and Penuelas, J. 2023. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands. Global Change Biology 29: 276-288 https://doi.org/10.1111/gcb.16465
  13. Jackson, C.R. and Vallaire, S.C. 2009. Effects of salinity and nutrients on microbial assemblages in Louisiana wetland sediments. Wetlands 29: 277-287. https://doi.org/10.1672/08-86.1
  14. Jackson, D.A. and Chen, Y. 2004. Robust principal component analysis and outlier detection with ecological data. Environmetrics: The Official Journal of the International Environmetrics Society 15: 129-139. https://doi.org/10.1002/env.628
  15. Ji, K.H., Jeong, Y.H., Kim, H.S., and Yang, J.S. 2009. The responses of particulate phosphorus exposed to the fresh water in marine sediment. Journal of the Korean Society for Marine Environment & Energy 12: 84-90. (in Korean)
  16. Joo, J.C., Choi, S., Heo, N., Liu, Z., Jeon, J.Y., and Hur, J.W. 2017. Analysis of the benthic nutrient fluxes from sediments in agricultural reservoirs used as fishing spots. Journal of Korean Society of Environmental Engineers 39: 613-625. (in Korean) https://doi.org/10.4491/KSEE.2017.39.11.613
  17. Jordan, T.E., Cornwell, J.C., Boynton, W.R., and Anderson, J.T. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: The iron conveyer belt. Limnology and Oceanography 53: 172-184. https://doi.org/10.4319/lo.2008.53.1.0172
  18. Jung, W.H. and Kim, G.H. 2006. Speciation of phosphorus dependent upon pH and oxidation reduction potential in overlying water and sediment. Journal of Korean Society of Environmental Engineers 28: 472-479. (in Korean)
  19. Kim, K.H., Kim, S.H., Jin, D.R., Huh, I.A., and Hyun. J.H. 2017. A Study on the Measurement Method for Benthic Nutrient Flux in Freshwater Sediments. Journal of Korean Society of Environmental Engineers 39: 288-302. (in Korean) https://doi.org/10.4491/KSEE.2017.39.5.288
  20. Kim, D.H., Park, Y.C., Lee, H.J., and Son, J.W. 2004. Characteristics of Geochemical Processes along the Salinity Gradient in the Han River Estuary. Journal of the Korean Society of Oceanography 9: 196-203. (in Korean)
  21. Kinsman-Costello, L., Bean, E., Goeckner, A., Matthews, J.W., O'Driscoll, M., Palta, M.M., ... and Stofan, M. 2023. Mud in the city: Effects of freshwater salinization on inland urban wetland nitrogen and phosphorus availability and export. Limnology and Oceanography Letters 8: 112-130. https://doi.org/10.1002/lol2.10273
  22. Kong, D.S. 2019. Statistical Analysis on Water Quality Characteristics of Large Lakes in Korea. Journal of Korean Society on Water Environment 35(2): 165-180 (in Korean)
  23. Kononets, M., Tengberg, A., Nilsson, M., Ekeroth, N., Hylen, A., Robertson, E.K., ... and Hall, P.O. 2021. In situ incubations with the Gothenburg benthic chamber landers: Applications and quality control. Journal of Marine Systems 214: 103475.
  24. Kwon, S.H., Cho, D.C. 2010. A Study on Anaerobic Release Characteristics of Marine Sediment and Effect of CaO2, an Oxygen Releasing Compound. Korea Academia-Industrial Cooperation Society 11: 4047-4054 https://doi.org/10.5762/KAIS.2010.11.10.4047
  25. Lee, C.G., Kim, G.J., Go, J.S., Shin, I.C., ... and Lim, B.S. 2005. Water quality and Sediment pollution Characteristics of Ganweol and Bunam lakes. pp. 1153-1160. (in Korean)
  26. Lee, K.H., Rho, B.H., Choi, H.J., and Lee, C.H. 2011. Estuary classification based on the characteristics of geomorphological features, natural habitat distributions and land uses. The Sea: Journal of the Korean Society of Oceanography 16: 53-69. (in Korean) https://doi.org/10.7850/jkso.2011.16.2.053
  27. Mackey, K.R.M. and Paytan, A. 2009. Phosphorus cycle. Encyclopedia of Microbiology 3: 322-334. https://doi.org/10.1016/B978-012373944-5.00056-0
  28. Markovic, S., Liang, A., Watson, S.B., Guo, J., Mugalingam, S., Arhonditsis, G., ... and Dittrich, M. 2019. Biogeochemical mechanisms controlling phosphorus diagenesis and internal loading in a remediated hard water eutrophic embayment. Chemical Geology 514: 122-137. https://doi.org/10.1016/j.chemgeo.2019.03.031
  29. Marks, B.M., Chambers, L., and White, J.R. 2016. Effect of fluctuating salinity on potential denitrification in coastal wetland soil and sediments. Soil Science Society of America Journal 80: 516-526. https://doi.org/10.2136/sssaj2015.07.0265
  30. McGillis, W.R., Langdon, C., Loose, B., Yates, K.K., and Corredor, J. 2011. Productivity of a coral reef using boundary layer and enclosure methods. Geophysical Research Letters 38.
  31. NIE. 2021. Survey on Estuarine Ecosystem ('21). National Institute of Ecology, Seocheon, South Korea. (in Korean)
  32. Oh, J.M., and Cho, Y. 2007. Effects of nutrients release from sediments on water quality in a small-size reservoir. Journal-Korean Society of Environmental Engineers 29: 1217. (in Korean)
  33. Osborne, R.I., Bernot, M.J., and Findlay, S.E. 2015. Changes in nitrogen cycling processes along a salinity gradient in tidal wetlands of the Hudson River, New York, USA. Wetlands, 35: 323-334. https://doi.org/10.1007/s13157-014-0620-4
  34. Paludan, C. and Morris, J.T. 1999. Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry 45: 197-221. https://doi.org/10.1007/BF01106781
  35. Riekenberg, P.M., Oakes, J.M., and Eyre, B.D. 2017. Uptake of dissolved organic and inorganic nitrogen in microalgae-dominated sediment: comparing dark and light in situ and ex situ additions of 15N. Marine Ecology Progress Series 571: 29-42. https://doi.org/10.3354/meps12127
  36. Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B., and Sloth, N.P. 1999. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22: 21-30. https://doi.org/10.2307/1352923
  37. Servais, S., Kominoski, J.S., Fernandez, M., and Morales, K. 2021. Saltwater and phosphorus drive unique soil biogeochemical processes in freshwater and brackish wetland mesocosms. Ecosphere 12: e03704.
  38. Small, G.E., Cotner, J.B., Finlay, J.C., Stark, R.A., and Sterner, R.W. 2014. Nitrogen transformations at the sediment-water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia 731: 95-108. https://doi.org/10.1007/s10750-013-1569-7
  39. Spiteri, C., Van Cappellen, P. and Regnier, P. 2008. Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers. Geochimica et Cosmochimica Acta 72: 3431-3445. https://doi.org/10.1016/j.gca.2008.05.003
  40. Sundareshwar, P.V. and Morris, J.T. 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography 44: 1693-1701. https://doi.org/10.4319/lo.1999.44.7.1693
  41. Wang, H., Gilbert, J.A., Zhu, Y., and Yang, X. 2018. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment 631: 1342-1349. https://doi.org/10.1016/j.scitotenv.2018.03.102
  42. Xia, X., Zhang, S., Li, S., Zhang, L., Wang, G., Zhang, L., ... and Li, Z. 2018. The cycle of nitrogen in river systems: sources, transformation, and flux. Environmental science: Processes & Impacts 20(6): 863-891. https://doi.org/10.1039/C8EM00042E
  43. Yoshie, S., Ogawa, T., Makino, H., Hirosawa, H., Tsuneda, S., and Hirata, A. 2006. Characteristics of bacteria showing high denitrification activity in saline wastewater. Letters in Applied Microbiology 42(3): 277-283. https://doi.org/10.1111/j.1472-765X.2005.01839.x
  44. Youn, S.J., Kim, H.N., Kim, Y.J., Im, J.K., Lee, E.J., and Yu, S.J. 2017. Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea. Journal of Korean Society on Water Environment 33: 670-679. (in Korean)
  45. Zhang, J.Z. and Huang, X.L. 2011. Effect of temperature and salinity on phosphate sorption on marine sediments. Environmental Science & Technology 45(16): 6831-6837. https://doi.org/10.1021/es200867p
  46. Zhang, M., Wang, Z.J., Huang, J.C., Sun, S., Cui, X., Zhou, W., and He, S. 2021. Salinity-driven nitrogen removal and its quantitative molecular mechanisms in artificial tidal wetlands. Water Research 202: 117446.
  47. Zhao, G., Sheng, Y., Jiang, M., Zhou, H., and Zhang, H. 2019. The biogeochemical characteristics of phosphorus in coastal sediments under high salinity and dredging conditions. Chemosphere 215: 681-692. https://doi.org/10.1016/j.chemosphere.2018.10.015