Browse > Article
http://dx.doi.org/10.7850/jkso.2009.14.3.134

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation  

Kim, Sung-Han (Division of Earth Environmental System, Pusan National University)
Khim, Boo-Keun (Division of Earth Environmental System, Pusan National University)
Shin, Hye-Sun (Division of Earth Environmental System, Pusan National University)
Uchida, Masao (National Institute for Environmental Studies)
Itaki, Takuya (Geological Survey of Japan)
Ohkushi, Kenichi (Faculty of Human Development, Kobe University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.14, no.3, 2009 , pp. 134-144 More about this Journal
Abstract
Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.
Keywords
Paleoproductivity; Biogenic Opal; Total Organic Carbon; Deglacial; Glacial; Bering Se;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bamola, J.M., D. Raynaud, Y.S. Korotkevich and C. Lorius, 1987. Vostok ice core provides 160,000-year record of atmospheric $CO_2$. Nature, 329: 408-414   DOI   PUBMED   ScienceOn
2 Blueford, J.R., 1983. Distribution of Quatemary radiolaria in the Navarin Basin geologic province, Bering Sea. Deep-Sea Res., 30:763-781   DOI   ScienceOn
3 Itaki, T., 2006. Eltoriation technique for extracting radiolarian skeletons from sandy sediments and its usefulness for faunal analysis. Radiolaria, 24: 14-18
4 Nakatsuka, T., K. Watanabe, N. Handa, E. Matsumoto and E. Wada 1995. Glacial to interglacial surface nutrient variations of Bering deep basins recorded by $\delta^{13}C$ and $\delta^{15}N$ of sedimentary organic matter. Paleoceanography, 10: 1047-1061   DOI
5 Nimmergut, A. and A. Abelmann, 2002. Spatial and seasonaI changes of radiolarian standing stocks in the Sea of Okhotsk. Deep-Sea Res. I, 49: 463-493   DOI   ScienceOn
6 Okada, M., M. Takagi, H. Narita and K. TakaImshi, 2005. Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paIeomagnetic and oxyglen isotopic anaIyses. Deep-Sea Res. II, 52: 2092-2109   DOI   ScienceOn
7 Okazaki, Y., K. Takahashi, H. Asahi, K. Katsuki, J. Hori, H. Yasuda, Y. Sagawa and H. Tokuyama, 2005. Productivity changes in the Bering Sea during the late Quatemary. Deep-Sea Res. II, 52: 2150-2162   DOI   ScienceOn
8 Petit, J.R., J. Jouzel, D. Raynaud, N.l. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, V.Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman and M. Stievenard, 1999. Climate and atrnospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436   DOI
9 Round, F.E., R.M. Crawford and D.G Mann, 1990. The diatoms: biology and morphology of the genera. Cambridge Univ. Press, Cambridge, 747 pp
10 Sabin, A.L. and N.G Pisias, 1996. Sea surface temperature changes in the northwestem Pacific Ocean during the past 20,000 years and their relationship to climate change in northwestem North America. Quat. Res., 46: 48-61   DOI   ScienceOn
11 Sancetta, C., 1983. Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep-Ses Res., 30: 851-869   DOI   ScienceOn
12 Stuiver, M., P.J. Peimer and T.F. Braziunas, 1998. High-preceision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40: 1127-1151   DOI   ScienceOn
13 Takahashi, K., N. Fujitani and N. Yanada, 2002. Long term monitoring of particle fluxes in the Bering Sea and the central the central subarctic Pacific Ocean, 1990-2000. Prog. Oceanogr., 55: 95-112   DOI   ScienceOn
14 Tanaka, S. and K. Takahshi, 2005. Late Quatemary paleoceanographic changes in the Bering sea and the westem subarctic Pacific based on radiolarian assemblage. Deep-Sea Res. II, 52: 2131-2149   DOI   ScienceOn
15 Kawahata, H., T. Okamoto, E. Matsumoto and H. Ujiie, 2000.Fluctuation of eolian flux and ocean productivity in the mid-latitude North Pacific during the last 200 kyr. Quat. Sci. Rev., 19: 1279-1291   DOI   ScienceOn
16 Morley, J.J. and J.D. Hays, 1983. Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett., 66: 63-77   DOI   ScienceOn
17 Hood, D.W., 1983. The Bering Sea. In: Estuaries and enclosed Seas, edited by Ketchum, B.H., Elsevier Sci. Pub. Co. pp. 337-373
18 Martinson, D.G, N.G Pisias, J.D. Hays, J. Imbrie, T.C. Moore and N.J. Shackleton, 1987. Age dating and the orbital theory of ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27: 1-29   DOI
19 Mortlock, R.A. and P.N. Froelich, 1989. A simple method for the ripid determination of of opal in pelagic marine sediments. Deep Sea Res., 36:1415-1426   DOI   ScienceOn
20 Khim, B.K., J.J. Bahk, S. Hyun and GH. Lee, 2007. Late Pleistocene dark laminated mud layers from the Korea Plateau, westem East Sea/Japan Sea and their paleoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247: 74-87   DOI   ScienceOn
21 Morley, J.J. V.L. Tiase, M.M. Ashby and M. Kashgarian, 1995. A high-resolution stratigraphy for Pleistocene sediments from North Pacific Sites 881, 883, and 887 based on abundance variations of the radiolarian Cycladophora davìsiana. In: Proceedings of the Ocean Drilling program, Scientific Results, 145, edited by Rea, D.K., I.A. Basov, D.W Scholl and J .F. Allan, Ocean Drilling Program, College Station, XT, pp. 133-140
22 Kitani, K., 1973. An oceanographic study of the Okhotsk Sea: particularly in regard to cold waters. Bulletin of Far Sea Fish Res. Laborat., 9: 45-77
23 Stabeno, P.J., J.D. Schumacher and K. Ohtani, 1999. The physical oceanography of the Bering Sea. In; Dynamics of the Bering Sea,edited by Loughlin, T.R. and K. Ohtani, Univ. Alaska Sea Grant, Fairbanks, pp. 1-28
24 Morley, J.J., J.D. Hays and J.H. Robertson, 1982, Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep-Sea Res., 29: 1485-1499   DOI   ScienceOn
25 Itaki, T.,M. Uchida, B.K. Khim, S. Kim, H.S. Shin and R. Tada, in press. Late Pleistocene strigraphy and paleoceanography in the northern Bering Sea slope: evidence from radiolarian species Cycladophora davisiana. J. Quat. Sci
26 Morley, J.J. and S.W Robinson, 1986. Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous geochemical statigraphy. Deep-Sea Res., 33(9): 1203-1211.   DOI   ScienceOn
27 Niebauer, H.J., N.A. Bond, L.P. Yakunin and V.V. Plotnikov, 1999 An update on the climatology and sea ice of the Bering Sea. ln: Dynamics of the Bering Sea, edited by Loughlin, T.R. and K Ohtani, Univ. Alaska Sea Grant, Fairbanks, pp. 29-59
28 Oba, T., M. Kato, H. Kitazato, I. Koizumi, A. Omura, T. Sakai and T. Takayama, 1991. Paleoenvironmental changes in the Japan Sea during last 85 ,000 years. Paleoceanography, 6: 499-518   DOI
29 Gorbarenko, S.A., I.A. Basov, M.P. Chekhovskaya, J. Southon, T.A Khusid and A.V. Artemova, 2005. Orbital and millenniurn scale environmental changes in the southem Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence. DeepSea Res. II, 52: 2174-2185   DOI   ScienceOn
30 Liu, Y.J., S.R. Song, T.Q. Lee, M.Y. Lee, Y.L. Chen and H.F. Chen, 2006. Mineralogical and geochemical changes in the sediments of the Okhotsk Sea during deglacial periods in the past 500 kyrs. Global Planet. Change, 53: 47-57   DOI   ScienceOn
31 Ohkushi, K., T. Itaki and N. Nemoto, 2003. Last glacial-Holocene change in intermediate-water ventilation in the Northwestem Pacific. Quat. Sci. Rev., 22: 1477-1484   DOI   ScienceOn
32 Sancetta, C., L. Heusser, L. Labeyrie, S.A. Naidu and S.W. Robinson, 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62:55-68   DOI   ScienceOn
33 Feely, R.A., C.L. Sabine, K. Lee, F.J. Millero, M.F. Lamb, D. Greeley, J.L. Bullister, R.M. Key, T.-H. Peng, A. Kozyr, T. Ono and C.S. Wong, 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochem. Cycles, 16: doi: 10.1029/2002GBOO 1866   DOI   ScienceOn
34 Barber, R.T. and F.P. Chavez, 1991. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr., 36: 1803-1815   DOI   ScienceOn
35 Brunelle, B.G, D.M. Sigman, M.S. Cook, L.D. Keigwin, GH. Haug, B. Plessen, G Schettler and S.L. Jaccard, 2007. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22: PA1215, doi:10.1029/2005PA001205   DOI   ScienceOn
36 Zheng, Y., A. Geen and R.F. Anderson, 2000. Intensification of the northeast Pacific oxygen minimun zone during the Bollig-Allerd warm period. Paleoceanography, 15: 528-536   DOI   ScienceOn
37 Hays, J.D. and J.J. Morley, 2003. The Sea of Okhotsk: A window on the ice age ocean. Deep-Sea Res., 50: 1481-1506   DOI   ScienceOn
38 de Vemal, A. and T.F. Pedersen, 1997. Micropaleontology and palynology of core PAR 87 A-lO: a 30,000 year record of paleoenvironmental changes in the Gulf of Alaska, Northeast Pacific. Paleoceanography,12: 821-830   DOI   ScienceOn
39 Thomas, E., K.K. Turekian and K.-Y. Wei, 2000. Productivity control of fine particle transport to equatorial Pacific sediment. Global Biogeochem. Cycles, 14: 945-955   DOI   ScienceOn
40 Ling, H.Y., 1973. Radiolaria: Leg 19 of the Deep Sea Drilling Project. In: lnitial Reports of the Deep Sea Drilling Project, 19, edited by Creager, J.S., D.W Scholl, et al., US Govemment Printing Office, Washington, pp. 777-797
41 Okkonen, S.R., GM. Schmidt, E.D. Cokelet and P.J. Stabεno, 2004. Satellite and hydrographic observations of the Bering Sea 'Green Belt'. Deep-Sea Res. Il, 51: 1033-1051   DOI   ScienceOn
42 Niebauer, H.J., 1998. Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996. J. Geophys. Res., 103: 27717-27737   DOI
43 Springer, A.M., C.P. McRoy and M.V.Flint, 1996. The Bering Sea Green Belt:shelf-edge processes and ecosystem production. Fish Oceanogr., 5: 205-223   DOI   ScienceOn
44 Itaki,T. N. Komatsu and I Motoyama, 2007. Orbial-and millennial-scale changes of radiolarian assembiages during the last 220 kyrs in the Japan Sea. Palaeoclimatol. PALAECOL., 247: 115-130   DOI   ScienceOn
45 Falkowski, P.G, 1997. Evolution ofthe nitrogen cycle and its influence on the biological sequestration of $CO_2$ in the ocean. Nature, 387, 272-275   DOI   ScienceOn
46 Narita, H., M. Sato, S. Tsunogai, M. Murayama, M. Ikehara, T.Nakasuka, M. Wakatsuchi, N. Harada and Y. Ujiie, 2002. Biogenic opal indicating less productive northwestem North Pacific during the glaciaI ages. Geophys. Res. Lett., 29: 1732, doi: lO.l029/200IGL014320   DOI   ScienceOn
47 Geen, A., Y. Zheng, J.M. Bernhard, K.G Cannariato, J. Carriquiry, W.E. Dean, B.W. Eakins, J.D. Ortiz and J. Pike, 2003. . Paleoceanography, 18: doi: lO.l029/2003PA000911   DOI   ScienceOn
48 Katsuki, K. and K. Takahashi, 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52: 2110-2130   DOI   ScienceOn
49 Muller, P.J. and R. Schnide, 1993. An automated leaching method for the rapid determination of opal in pelagic marine sediments. Deep Sea Res., 36: 1415-1426   DOI   ScienceOn
50 Banahan, S. and J.J. Goering, 1986. The production of biogenic silica and its accurnulation on the southeastem Bering Sea shelf. Cont. Shelf Res., 5: 199-213   DOI   ScienceOn
51 Grebmeier, J.M., J.E. Overland, S.E. Moore, E.Y. Farley, E.C. Carmack, L.W. Cooper, K.E. Frey, J.H. Helle, F.A. McLaughlin and S.L. McNutt, 2006. A major ecosystem shift in the northem Bering Sea. Science, 311: 1461-1464   DOI   PUBMED   ScienceOn
52 Loughlin, T.R. and K. Ohtani, 1999. Dynamics of the Bering Sea. Univ. Alaska Sea Grant, Fairbanks, pp. 1-825
53 Cook, M.S., L.D. Keigwin and C.A. Sancetta, 2005. the deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res.II, 52: 2163-2173   DOI   ScienceOn
54 Goll, R.M. and K.R. Bjorklund, 1974. Radiolaria in surface sediments of the South Atlantic. Micropaleontology, 20: 38-75   DOI   ScienceOn
55 Takahashi, K., 1998. The Bering and Okhotsk Sea: modem and Past paleoceanographic changes and gateway impact. J. Asian Earth Sci.,16: 49-58   DOI   ScienceOn
56 Zhang, J., P. Wang, Q. Li, X. Cheng, H. Jin and S. Zhang, 2007. Westem equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminideral and nannofossil evidence from ODP Hole 807A. Mar. Micropaleontol., 64: 121-140   DOI   ScienceOn
57 Honjo, S., S.J. Manganini and J.J. Cole, 1982. Sedimentation of biogenic matter in the deep ocean. Deep-Sea Res., 29: 609-625   DOI   ScienceOn
58 Kinder, T.H., L.K. Goachman and J.A. Galt, 1975. The Bering slope current system. J. Phys. Oceanogr., 5: 231-244   DOI
59 Taniguchi, A., 1999. Differences in the structure ofthe lower trophic levels of pelagic ecosystems in the eastem and westem subarctic Pacific. Progr. Oceanogr., 43: 289-315   DOI   ScienceOn