• Title/Summary/Keyword: GeoSensor환경

Search Result 61, Processing Time 0.027 seconds

GeoSensor Data Stream Processing System for u-GIS Computing (u-GIS 컴퓨팅을 위한 GeoSensor 데이터 스트림 처리 시스템)

  • Chung, Weon-Il;Shin, Soong-Sun;Back, Sung-Ha;Lee, Yeon;Lee, Dong-Wook;Kim, Kyung-Bae;Lee, Chung-Ho;Kim, Ju-Wan;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • In ubiquitous spatial computing environments, GeoSensor generates sensor data streams including spatial information as well as various conventional sensor data from RFID, WSN, Web CAM, Digital Camera, CCTV, and Telematics units. This GeoSensor enables the revitalization of various ubiquitous USN technologies and services on geographic information. In order to service the u-GIS applications based on GeoSensors, it is indispensable to efficiently process sensor data streams from GeoSensors of a wide area. In this paper, we propose a GeoSensor data stream processing system for u-GIS computing over real-time stream data from GeoSensors with geographic information. The proposed system provides efficient gathering, storing, and continuous query processing of GeoSensor data stream, and also makes it possible to develop diverse u-GIS applications meet each user requirements effectively.

  • PDF

Pre-Filtering based Post-Load Shedding Method for Improving Spatial Queries Accuracy in GeoSensor Environment (GeoSensor 환경에서 공간 질의 정확도 향상을 위한 선-필터링을 이용한 후-부하제한 기법)

  • Kim, Ho;Baek, Sung-Ha;Lee, Dong-Wook;Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.18-27
    • /
    • 2010
  • In u-GIS environment, GeoSensor environment requires that dynamic data captured from various sensors and static information in terms of features in 2D or 3D are fused together. GeoSensors, the core of this environment, are distributed over a wide area sporadically, and are collected in any size constantly. As a result, storage space could be exceeded because of restricted memory in DSMS. To solve this kind of problems, a lot of related studies are being researched actively. There are typically 3 different methods - Random Load Shedding, Semantic Load Shedding, and Sampling. Random Load Shedding chooses and deletes data in random. Semantic Load Shedding prioritizes data, then deletes it first which has lower priority. Sampling uses statistical operation, computes sampling rate, and sheds load. However, they are not high accuracy because traditional ones do not consider spatial characteristics. In this paper 'Pre-Filtering based Post Load Shedding' are suggested to improve the accuracy of spatial query and to restrict load shedding in DSMS. This method, at first, limits unnecessarily increased loads in stream queue with 'Pre-Filtering'. And then, it processes 'Post-Load Shedding', considering data and spatial status to guarantee the accuracy of result. The suggested method effectively reduces the number of the performance of load shedding, and improves the accuracy of spatial query.

A Dual Processing Load Shedding to Improve The Accuracy of Aggregate Queries on Clustering Environment of GeoSensor Data Stream (클러스터 환경에서 GeoSensor 스트림 데이터의 집계질의의 정확도 향상을 위한 이중처리 부하제한 기법)

  • Ji, Min-Sub;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • u-GIS DSMSs have been researched to deal with various sensor data from GeoSensors in ubiquitous environment. Also, they has been more important for high availability. The data from GeoSensors have some characteristics that increase explosively. This characteristic could lead memory overflow and data loss. To solve the problem, various load shedding methods have been researched. Traditional methods drop the overloaded tuples according to a particular criteria in a single server. Tuple deletion sensitive queries such as aggregation is hard to satisfy accuracy. In this paper a dual processing load shedding method is suggested to improve the accuracy of aggregation in clustering environment. In this method two nodes use replicated stream data for high availability. They process a stream in two nodes by using a characteristic they share stream data. Stream data are synchronized between them with a window as a unit. Then, processed results are merged. We gain improved query accuracy without data loss.

Geographical Time Back-off Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 쥐치 정보의 시간차를 이용한 에너지 효율적인 라우팅 프로토콜)

  • Kim, Jae-Hyun;Sim, In-Bo;Kim, Hong;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper, we propose Geographical Back-off Routing (Geo-Back Routing) protocol for wireless sensor networks. Geo-Back uses the positions of nodes, a packet's destination and a optimal back-off time to make the packet forwarding decisions using only source and destination's location information without information about neighbor nodes' location or the number of one hop neighbor nodes. Under the frequent topology changes in WSNs, the proposed protocol can find optimal next hop location quickly without broadcast algorithm for update. In our analysis, Geo-Back's scalability and better performance is demonstrated on densely deployed wireless sensor networks.

Spatial-Sensor Observation Service for Spatial Operation of GeoSensor (GeoSensor의 공간연산을 확장한 Spatial-Sensor Observation Service)

  • Lee, Hyuk;Lee, Yeon;Chung, Weon-Il;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.35-44
    • /
    • 2011
  • Advances in science and technology have made a lot of changes in our life. Especially, sensors have used in various ways to monitor in real time and analyze the world effectively. Traditional sensor networks, however, have used their own protocols and architecture so it had to be paid a lot of additional cost. In the past 8 years, OGC and ISO have been formulating standards and protocols for the geospatial Sensor Web. Although the OGC SWE initiatives have deployed some components, attempts have been made to access sensor data. All spatial operations had to calculate on the client side because traditional SOS architecture did not consider spatial operation for GeoSensor. As a result, clients have to implement and run spatial operations, and it caused a lot of overload on them and decreased approachableness. In this paper we propose S-SOS for in-situ and moving GeoSensor that extends 52 North SOS and provides spatialFilter and spatialFinder operations. The proposed S-SOS provides an architecture that does not need to edit already deployed SOSs and can add spatial operations as occasion. Additionally we explain how to express the spatial queries and to be used effectively for various location based services.

Geo-Environmental Site Investigation for Underground Oil Storage facilities and Landfill Using the Envi-Cone Penetrometer System (환경콘 관입시스템을 이용한 유류저장소 및 폐기물매립지 지중환경특성 조사)

  • 정하익;홍승서;김영진;홍성완;곽무영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.33-36
    • /
    • 2000
  • The purpose of this study investigated underground oil storage(USTs) and Landfill using the envi-cone penetrometer system. The electrical resistivity sensor, pH sensor, ORP sensor, and thermometer are installed in envi-cone penetrometer system. This envi-cone penetrometer system provides a continuous profile of measurements, and it is rapid, repeatable, reliable and cost effective for investigation of contaminated ground.

  • PDF

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

Development of Horizontal Displacement Sensor for Rainfall-simulated Centrifugal Model Test (강우재현 원심모형실험에 적용하기 위한 수평변위 계측장치의 개발)

  • Lee, Chungwon;Park, Sungyong;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.71-77
    • /
    • 2014
  • Heavy rainfall induces many disasters including slope failure and infrastructure collapse. In this point of view, rainfall-simulated centrifugal model test can be a reasonable tool to evaluate the stability of geotechnical structure. In order to obtain the displacements of a model in centrifugal model test, in general, LVDT and laser displacement sensor are used. However, when the rainfall is simulated, the LVDT has the problem of excessive infiltration into the model ground, and the laser displacement sensor provides the measuring result with inaccuracy due to the dispersion of the laser radiation. Hence, in this study, horizontal displacement sensor for rainfall-simulated centrifugal model test was developed. This sensor produced with a thin elastic steel plate and gave the accurate relationship between the displacement and the strain.

Application for Disaster Prediction of Reservoir Dam Wireless Sensor Network System based on Field Trial Construction (현장 시험시공을 통한 저수지 댐의 재해예측 무선센서 네트워크 시스템 적용성 평가)

  • Yoo, Chanho;Kim, Seungwook;Baek, Seungcheol;Na, Gihyuk;You, Kwangho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2019
  • In this present study, to evaluate the applicability of the monitoring system of the entire reservoir dam facility using the wireless sensor network system and a section representative of the domestic reservoir dam was selected as the test bed site and to operated a system that can evaluate the condition of the facility at the real time with monitoring. In order to set up a wireless sensor network system, the system assessment of present state was carried out for confirmation the risk factors and the limit values of the risk factors in limit state were calculated. The type and position of the sensor to be measured in the field were determined by setting the measurement items suitable for the hazardous area and the risk factor. In this paper, we evaluated the feasibility of the system by monitoring and constructing a wireless sensor network system in a field for a fill dam that can represent a domestic reservoir dam. Applicability evaluation was verified by comparing directly with the measurement of partial concentration method which is the measurement management technology of the dam.

Trends of u-GIS Spatial Information Technology (u-GIS 공간정보 기술 동향)

  • Lee, Chung-Ho;An, Gyeong-Hwan;Lee, Mun-Su;Kim, Ju-Wan
    • Electronics and Telecommunications Trends
    • /
    • v.22 no.3 s.105
    • /
    • pp.110-123
    • /
    • 2007
  • 최근 정보통신기술의 발달로 인해 다양한 종류의 컴퓨터가 사람, 사물, 환경 속으로 스며들고, 이들이 서로 네트워크로 연결되어 인간의 삶을 도와주는 유비쿼터스 환경이 급속히 진전되고 있다. 이러한 유비쿼터스 환경은 모두 국토 공간을 근간으로 구현되고 있으며, 국토에 대한 공간 및 위치 정보를 제공하는 u-GIS 공간정보 기술은 미래 유비쿼터스 환경의 핵심 기반 기술로 대두되고 있다. 본 고에서는 u-GIS 공간정보 기술을 구성하는 핵심 기술인 GeoSensor와 GIS 데이터 처리 기술, u-GIS 통합정보 처리기술과 모바일 GeoSensing 기술을 중심으로 최신 동향 및 이슈들을 소개하고, 향후연구 개발 방향을 제시해 보고자 한다.