• Title/Summary/Keyword: Genome topology

Search Result 6, Processing Time 0.016 seconds

A Phylogenetic Analysis for Hox Linked Gene Families of Vertebrates

  • Kim, Sun-Woo;Jung, Gi-La;Lee, Jae-Hyoun;Park, Ha-Young;Kim, Chang-Bae
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.261-267
    • /
    • 2008
  • The human chromosomes 2, 7, 12 and 17 show genomic homology around Hox gene clusters, is taken as evidence that these paralogous gene families might have arisen from a ancestral chromosomal segment through genome duplication events. We have examined protein data from vertebrate and invertebrate genomes to analyze the phylogenetic history of multi-gene families with three or more of their representatives linked to human Hox clusters. Topology comparison based upon statistical significance and information of chromosome location for these genes examined have revealed many of linked genes coduplicated with Hox gene clusters. Most linked genes to Hox clusters share the same evolutionary history and are duplicated in concert with each other. We conclude that gene families linked to Hox clusters may be suggestion of ancient genome duplications.

Simple Sequence Repeat (SSR) and GC Distribution in the Arabidopsis thaliana Genome

  • Mortimer Jennifer C;Batley Jacqueline;Love Christopher G;Logan Erica;Edwards David
    • Journal of Plant Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • We have mined each of the five A. thaliana chromosomes for the presence of simple sequence repeats (SSRs) and developed custom perl scripts to examine their distribution and abundance in relation to genomic position, local G/C content and location within and around transcribed sequences. The distribution of repeats and G/C content with respect to genomic regions (exons, UTRs, introns, intergenic regions and proximity to expressed genes) are shown. SSRs show a non-random distribution across the genome and a strong association within and around transcribed sequences, while G/C density is associated specifically with the coding portions of transcribed sequences. SSR motif repeat number shows a high degree of variation for each SSR type and a high degree of motif sequence bias reflecting local genome sequence composition. PCR primers suitable for the amplification of identified SSRs have been designed where possible, and are available for further studies.

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes

  • Kim, Jong-Min;Kim, Byung-Gee;Oh, S.-June
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.111-121
    • /
    • 2009
  • Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.

Comparing Two Mycobacterium tuberculosis Genomes from Chinese Immigrants with Native Genomes Using Mauve Alignments

  • Ryoo, Sungweon;Lee, Jeongsoo;Oh, Jee Youn;Kim, Byeong Ki;Kim, Young;Kim, Je Hyeong;Shin, Chol;Lee, Seung Heon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.81 no.3
    • /
    • pp.216-221
    • /
    • 2018
  • Background: The number of immigrants with tuberculosis (TB) increases each year in South Korea. Determining the transmission dynamics based on whole genome sequencing (WGS) to cluster the strains has been challenging. Methods: WGS, annotation refinement, and orthology assignment for the GenBank accession number acquisition were performed on two clinical isolates from Chinese immigrants. In addition, the genomes of the two isolates were compared with the genomes of Mycobacterium tuberculosis isolates, from two native Korean and five native Chinese individuals using a phylogenetic topology tree based on the Multiple Alignment of Conserved Genomic Sequence with Rearrangements (Mauve) package. Results: The newly assigned accession numbers for two clinical isolates were CP020381.2 (a Korean-Chinese from Yanbian Province) and CP022014.1 (a Chinese from Shandong Province), respectively. Mauve alignment classified all nine TB isolates into a discriminative collinear set with matched regions. The phylogenetic analysis revealed a rooted phylogenetic tree grouping the nine strains into two lineages: strains from Chinese individuals and strains from Korean individuals. Conclusion: Phylogenetic trees based on the Mauve alignments were supposed to be useful in revealing the dynamics of TB transmission from immigrants in South Korea, which can provide valuable information for scaling up the TB screening policy for immigrants.

Identification of WAT1-like genes in Panax ginseng and functional analysis in secondary growth

  • Hong, Jeongeui;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.171-177
    • /
    • 2022
  • The precise homeostatic regulation of local auxin accumulation in xylem precursors of cambium stem cell tissues is one of the most important mechanisms for plant vascular patterning and radial secondary growth. Walls are thin (WAT1), a novel intracellular auxin transporter, contributes directly to the auxin accumulation maxima in xylem precursors. According to recent research, the auxin signaling activated pathway-related gene network was significantly enriched during the secondary growth of Panax ginseng storage roots. These imply that during P. ginseng root secondary growth, specific signaling mechanisms for local auxin maxima in the vascular cambial cells are probably triggered. This study identified four WAT1-like genes, PgWAT1-1/-2 and PgWAT2-1/-2, in the P. ginseng genome. Their expression levels were greatly increased in nitratetreated storage roots stimulated for secondary root growth. PgWAT1-1 and PgWAT2-1 were similar to WAT1 from Arabidopsis and tomato plants in terms of their subcellular localization at a tonoplast and predicted transmembrane topology. We discovered that overexpression of PgWAT1-1 and PgWAT2-1 was sufficient to compensate for the secondary growth defects observed in slwat1-copi loss of function tomato mutants. This critical information from the PgWAT1-1 and PgWAT2-1 genes can potentially be used in future P. ginseng genetic engineering and breeding for increased crop yield.

Characterization of Phylogenetic Incongruence among Protein Coding Genes of Vibrio Strains Pathogenic to Humans (인체 병원성 비브리오 균주간 유전자 계통의 불일치성 분석)

  • Zo, Young-Gun
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.383-390
    • /
    • 2013
  • Lateral gene transfer (LGT) of genes from other bacteria into Vibrio cholerae is expectable because of the pronounced natural competence of the bacterium. In this study, quantitative aspects of LGT among the three species of Vibrio pathogenic to humans were characterized. Genome sequences of V. cholerae N16961, V. parahaemolyticus RIMD2210633, V. vulnificus CMCP6, and Escherichia coli K12 substrain MG1655 were analyzed to determine orthologous quartets of protein coding genes present in all four genomes. Phylogenetic analyses on the quartets were conducted to resolve vertical versus lateral patterns of gene polymorphisms based on congruence versus incongruence of phylogenetic trees. About 70% of the quartets could be resolved as either cohesive topology (75%) or LGT tree topologies (25%). The amount of LGT genes in Vibrio spp. appeared to be abnormally high for a genus and comparable to those of families. Patched distributions of LGT from different donors were observed on a chromosome. In the small chromosome of V. cholerae, physical linkages among LGT loci spanned half the length of the chromosome. Either accumulative selection for the donor alleles in LGT or presence of large-scale LGT events was hypothesized. These findings warrant further studies on the nature of donor-specificity of LGT alleles and its influence on evolution of Vibrio virulence to humans.