Browse > Article
http://dx.doi.org/10.7845/kjm.2013.3091

Characterization of Phylogenetic Incongruence among Protein Coding Genes of Vibrio Strains Pathogenic to Humans  

Zo, Young-Gun (Department of Biology, Kyungsung University)
Publication Information
Korean Journal of Microbiology / v.49, no.4, 2013 , pp. 383-390 More about this Journal
Abstract
Lateral gene transfer (LGT) of genes from other bacteria into Vibrio cholerae is expectable because of the pronounced natural competence of the bacterium. In this study, quantitative aspects of LGT among the three species of Vibrio pathogenic to humans were characterized. Genome sequences of V. cholerae N16961, V. parahaemolyticus RIMD2210633, V. vulnificus CMCP6, and Escherichia coli K12 substrain MG1655 were analyzed to determine orthologous quartets of protein coding genes present in all four genomes. Phylogenetic analyses on the quartets were conducted to resolve vertical versus lateral patterns of gene polymorphisms based on congruence versus incongruence of phylogenetic trees. About 70% of the quartets could be resolved as either cohesive topology (75%) or LGT tree topologies (25%). The amount of LGT genes in Vibrio spp. appeared to be abnormally high for a genus and comparable to those of families. Patched distributions of LGT from different donors were observed on a chromosome. In the small chromosome of V. cholerae, physical linkages among LGT loci spanned half the length of the chromosome. Either accumulative selection for the donor alleles in LGT or presence of large-scale LGT events was hypothesized. These findings warrant further studies on the nature of donor-specificity of LGT alleles and its influence on evolution of Vibrio virulence to humans.
Keywords
Vibrio cholerae; Vibrio parahaemolyticus; Vibrio vulnificus; lateral gene transfer; quartet analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.   DOI   ScienceOn
2 Antonova, E.S. and Hammer, B.K. 2011. Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. FEMS Microbiol. Lett. 322, 68-76.   DOI   ScienceOn
3 Baumann, P., Furniss, A.L., and Lee, J.V. 1984. Genus I. Vibrio. In Krieg, N.R. and Holt, J.G. (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1, pp. 518-538. Williams & Wilkins, Baltimore, M.D., USA.
4 Boucher, Y., Cordero, O.X., Takemura, A., Hunt, D.E., Schliep, K., Bapteste, E., Lopez, P., Tarr, C.L., and Polz, M.F. 2011. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio 2, e00335-10.
5 Chun, J., Grim, C.J., Hasan, N.A., Lee, J.H., Choi, S.Y., Haley, B.J., Taviani, E., Jeon, Y.S., Kim, D.W., Brettin, T.S., and et al. 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc. Natl. Acad. Sci. USA 106, 15442-15447.   DOI   ScienceOn
6 Clarke, G.D., Beiko, R.G., Ragan, M.A., and Charlebois, R.L. 2002. Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J. Bacteriol. 184, 2072-2080.   DOI
7 Daubin, V., Moran, N.A., and Ochman, H. 2003. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829-832.   DOI   ScienceOn
8 Dikow, R.B. and Smith, W.L. 2013. Genome-level homology and phylogeny of Vibrionaceae (Gammaproteobacteria: Vibrionales) with three new complete genome sequences. BMC Microbiol. 13, 80.   DOI   ScienceOn
9 Doolittle, W.F. 2012. Population genomics: how bacterial species form and why they don't exist. Curr. Biol. 22, R451-453.   DOI   ScienceOn
10 Doolittle, W.F. and Zhaxybayeva, O. 2009. On the origin of prokaryotic species. Genome Res. 19, 744-756.   DOI   ScienceOn
11 Feil, E.J., Holmes, E.C., Bessen, D.E., Chan, M.S., Day, N.P., Enright, M.C., Goldstein, R., Hood, D.W., Kalia, A., Moore, C.E., and et al. 2001. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl. Acad. Sci. USA 98, 182-187.   DOI   ScienceOn
12 Jammalamadaka, S.R. and SenGupta, A. 2001. Topics in Circular Statistics. World Scientific Publishing Co., Singapore.
13 Ochman, H., Lawrence, J.G., and Groisman, E.A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299-304.   DOI   ScienceOn
14 Kahlke, T., Goesmann, A., Hjerde, E., Willassen, N.P., and Haugen, P. 2012. Unique core genomes of the bacterial family Vibrionaceae:insights into niche adaptation and speciation. BMC Genomics 13, 179.   DOI
15 Lo Scrudato, M. and Blokesch, M. 2013. A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res. 41, 3644-3658.   DOI   ScienceOn
16 Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.Y., and Schoolnik, G.K. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310, 1824-1827.   DOI   ScienceOn
17 Papke, R.T. and Gogarten, J.P. 2012. Ecology. How bacterial lineages emerge. Science 336, 45-46.   DOI   ScienceOn
18 Rowe-Magnus, D.A., Guerout, A.M., Biskri, L., Bouige, P., and Mazel, D. 2003. Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res. 13, 428-442.   DOI   ScienceOn
19 Schmidt, H.A., Strimmer, K., Vingron, M., and von Haeseler, A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502-504.   DOI   ScienceOn
20 Seitz, P. and Blokesch, M. 2013. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl. Acad. Sci. USA 110, 17987-17992.   DOI   ScienceOn
21 Shapiro, B.J., Friedman, J., Cordero, O.X., Preheim, S.P., Timberlake, S.C., Szabo, G., Polz, M.F., and Alm, E.J. 2012. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48-51.   DOI
22 Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36.   DOI   ScienceOn
23 Strimmer, K. and von Haeseler, A. 1997. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94, 6815-6819.   DOI