DOI QR코드

DOI QR Code

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes

  • Kim, Jong-Min (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Oh, S.-June (Department of Pharmacology, College of Medicine and Ubiquitous Healthcare Research Center, Inje University)
  • Published : 2009.06.30

Abstract

Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.

Keywords

References

  1. Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y., and Arai, S. (1993). Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem. 268, 12033- 12039
  2. Albert, R., Jeong, H., and Barabasi, A.-L. (1999). Diameter of the world-wide web. Nature 401, 130-131 https://doi.org/10.1038/43601
  3. Bargmann, C. I. (2006). Comparative chemosensation from receptors to ecology. Nature 444, 295-301 https://doi.org/10.1038/nature05402
  4. Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo . PLoS Biol. 4, e20 https://doi.org/10.1371/journal.pbio.0040020
  5. Bockaert, J., and Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729 https://doi.org/10.1093/emboj/18.7.1723
  6. Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187 https://doi.org/10.1016/0092-8674(91)90418-X
  7. Catapano, L. A., and Manji, H. K. (2007). G protein-coupled receptors in major psychiatric disorders. Biochim. Biophys. Acta. 1768, 976-993 https://doi.org/10.1016/j.bbamem.2006.09.025
  8. Conesa, A., Gtz, S., Garca-Gmez, J. M., Terol, J., Taln, M., and Robles, M. (2005). Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676 https://doi.org/10.1093/bioinformatics/bti610
  9. Daley, D. O., Rapp, M., Granseth, E., Meln, K., Drew, D., and von Heijne, G. (2005). Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321-1323 https://doi.org/10.1126/science.1109730
  10. Dulac, C., and Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195-206 https://doi.org/10.1016/0092-8674(95)90161-2
  11. Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Juszczak, E., Fong, S. L., Rao, J. K., and Argos, P. (1983). The structure of bovine rhodopsin. Biophys Struct Mech 9, 235-244 https://doi.org/10.1007/BF00535659
  12. Harrison, P. M., and Gerstein, M. (2002). Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J. Mol. Biol. 318, 155-1174 https://doi.org/10.1016/S0022-2836(02)00109-2
  13. Hill, C. A., Fox, A. N., Pitts, R. J., Kent, L. B., Tan, P. L., Chrystal, M. A., Cravchik, A., Collins, F. H., Robertson, H. M., and Zwiebel, L. J. (2002). G protein-coupled receptors in anopheles gambiae. Science 298, 176-178 https://doi.org/10.1126/science.1076196
  14. Hong, X., Scofield, D. G., and Lynch, M. (2006). Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 23, 2392-2404 https://doi.org/10.1093/molbev/msl111
  15. Huynen, M. A., and van Nimwegen, E. (1998). The frequency distribution of gene family sizes in complete genomes. Mol. Biol. Evol. 15, 583-589 https://doi.org/10.1093/oxfordjournals.molbev.a025959
  16. Ikeda, M., Arai, M., Lao, D. M., and Shimizu, T. (2002). Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol. 2, 19-33
  17. Ikeda, M., Arai, M., Okuno, T., and Shimizu, T. (2003). Tmpdb: a database of experimentally-characterized transmembrane topologies. Nucleic Acids. Res. 31, 406-409 https://doi.org/10.1093/nar/gkg020
  18. Inoue, Y., Yamazaki, Y., and Shimizu, T. (2005). How accurately can we discriminate G protein-coupled receptors as 7-TMS TM protein sequences from other sequences? Biochem. Biophys. Res. Commun. 338, 1542-1546 https://doi.org/10.1016/j.bbrc.2005.10.123
  19. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabsi, A. L. (2000). The large-scale organization of metabolic networks. Nature 407, 651-654 https://doi.org/10.1038/35036627
  20. Jones, W. D., Nguyen, T.-A. T., Kloss, B., Lee, K. J., and Vosshall, L. B. (2005). Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 15, R119-R121 https://doi.org/10.1016/j.cub.2005.02.007
  21. Kim, H., Meln, K., Osterberg, M., and von Heijne, G. (2006). A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl. Acad. Sci. U.S.A. 103, 11142-11147 https://doi.org/10.1073/pnas.0604075103
  22. Krieger, J., Klink, O., Mohl, C., Raming, K., and Breer, H. (2003). A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189, 519-526 https://doi.org/10.1007/s00359-003-0427-x
  23. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580 https://doi.org/10.1006/jmbi.2000.4315
  24. Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., and Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714 https://doi.org/10.1016/j.neuron.2004.08.019
  25. Li, W., and Kaneko, K. (1992). Long-range correlation and partial spectrum in a noncoding DNA sequence. Europhys. Lett. 17, 655-660 https://doi.org/10.1209/0295-5075/17/7/014
  26. Lynch, M., Scofield, D. G., and Hong, X. (2005). The evolution of transcription-initiation sites. Mol. Biol. Evol. 22, 1137-1146 https://doi.org/10.1093/molbev/msi100
  27. Makino, A., Prossnitz, E. R., B $\ddot{u}$nemann, M., Wang, J. M., Yao, W., and Schmid-Schnbein, G. W. (2006). G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J. Physiol. Cell. Physiol. 290, C1633-C1639 https://doi.org/10.1152/ajpcell.00576.2005
  28. Martignetti, L., and Caselle, M. (2007). Universal power law behaviors in genomic sequences and evolutionary models. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 021902 https://doi.org/10.1103/PhysRevE.76.021902
  29. Mio, K., Ogura, T., and Sato, C. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J. Synchrotron Radiat. 15, 211-214 https://doi.org/10.1107/S0909049508004640
  30. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745 https://doi.org/10.1126/science.289.5480.739
  31. Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., and Stanley, H. E. (1992). Long-range correlations in nucleotide sequences. Nature 356, 168-170 https://doi.org/10.1038/356168a0
  32. Robertson, H. M., and Wanner, K. W. (2006). The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395-1403 https://doi.org/10.1101/gr.5057506
  33. Robertson, H. M., Warr, C. G., and Carlson, J. R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster . Proc. Natl. Acad. Sci. U.S.A. 100(Suppl 2), 14537-14542 https://doi.org/10.1073/pnas.2335847100
  34. Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002-1006 https://doi.org/10.1038/nature06850
  35. Tusnady, G. E., and Simon, I. (1998). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489-506 https://doi.org/10.1006/jmbi.1998.2107
  36. Tusnady, G. E., and Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850 https://doi.org/10.1093/bioinformatics/17.9.849
  37. Tusnady, G. E., and Simon, I. (2001). Topology of membrane proteins. J. Chem. Inf. Comput. Sci. 41, 364-368 https://doi.org/10.1021/ci0001280
  38. Voss, R. F. (1992). Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys. Rev Lett. 68, 3805-3808 https://doi.org/10.1103/PhysRevLett.68.3805
  39. Wallin, E., and von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029-1038 https://doi.org/10.1002/pro.5560070420
  40. Wicher, D., Schfer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H., and Hansson, B. S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007-1011 https://doi.org/10.1038/nature06861