Browse > Article
http://dx.doi.org/10.5808/GI.2009.7.2.111

Evolutionary Signature of Information Transfer Complexity in Cellular Membrane Proteomes  

Kim, Jong-Min (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering, College of Engineering, Seoul National University)
Oh, S.-June (Department of Pharmacology, College of Medicine and Ubiquitous Healthcare Research Center, Inje University)
Abstract
Cell membrane proteins play crucial roles in the cell's molecular interaction with its environment and within itself. They consist of membrane-bound proteins and many types of transmembrane (TM) proteins such as receptors, transporters, channel proteins, and enzymes. Membrane proteomes of cellular organisms reveal some characteristics in their global topological distribution according to their evolutionary positions, and show their own information transfer complexity. Predicted transmembrane segments (TMSs) in membrane proteomes with HMMTOP showed near power-law distribution and frequency characteristics in 6-TMS and 7-TMS proteins in prokaryotes and eukaryotes, respectively. This reaffirms the important roles of membrane receptors in cellular communication and biological evolutionary history.
Keywords
chemoreceptor; G protein-coupled receptor; information transfer complexity; membrane protein topology; seven-transmembrane region; signal transduction; transmembrane protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Benton, R., Sachse, S., Michnick, S. W., and Vosshall, L. B. (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo . PLoS Biol. 4, e20   DOI   PUBMED   ScienceOn
2 Dulac, C., and Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195-206   DOI   ScienceOn
3 Hong, X., Scofield, D. G., and Lynch, M. (2006). Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 23, 2392-2404   DOI   ScienceOn
4 Ikeda, M., Arai, M., Lao, D. M., and Shimizu, T. (2002). Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol. 2, 19-33   PUBMED
5 Inoue, Y., Yamazaki, Y., and Shimizu, T. (2005). How accurately can we discriminate G protein-coupled receptors as 7-TMS TM protein sequences from other sequences? Biochem. Biophys. Res. Commun. 338, 1542-1546   DOI   ScienceOn
6 Huynen, M. A., and van Nimwegen, E. (1998). The frequency distribution of gene family sizes in complete genomes. Mol. Biol. Evol. 15, 583-589   DOI   PUBMED   ScienceOn
7 Wicher, D., Schfer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H., and Hansson, B. S. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452, 1007-1011   DOI   ScienceOn
8 Abe, K., Kusakabe, Y., Tanemura, K., Emori, Y., and Arai, S. (1993). Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J. Biol. Chem. 268, 12033- 12039   PUBMED
9 Tusnady, G. E., and Simon, I. (2001). The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849-850   DOI   ScienceOn
10 Ikeda, M., Arai, M., Okuno, T., and Shimizu, T. (2003). Tmpdb: a database of experimentally-characterized transmembrane topologies. Nucleic Acids. Res. 31, 406-409   DOI   ScienceOn
11 Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Juszczak, E., Fong, S. L., Rao, J. K., and Argos, P. (1983). The structure of bovine rhodopsin. Biophys Struct Mech 9, 235-244   DOI   ScienceOn
12 Bargmann, C. I. (2006). Comparative chemosensation from receptors to ecology. Nature 444, 295-301   DOI   PUBMED   ScienceOn
13 Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452, 1002-1006   DOI   ScienceOn
14 Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H., and Vosshall, L. B. (2004). Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714   DOI   ScienceOn
15 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580   DOI   ScienceOn
16 Lynch, M., Scofield, D. G., and Hong, X. (2005). The evolution of transcription-initiation sites. Mol. Biol. Evol. 22, 1137-1146   DOI   ScienceOn
17 Mio, K., Ogura, T., and Sato, C. (2008). Structure of six-transmembrane cation channels revealed by single-particle analysis from electron microscopic images. J. Synchrotron Radiat. 15, 211-214   DOI   ScienceOn
18 Catapano, L. A., and Manji, H. K. (2007). G protein-coupled receptors in major psychiatric disorders. Biochim. Biophys. Acta. 1768, 976-993   DOI   ScienceOn
19 Buck, L., and Axel, R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175-187   DOI   ScienceOn
20 Conesa, A., Gtz, S., Garca-Gmez, J. M., Terol, J., Taln, M., and Robles, M. (2005). Blast2go: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676   DOI   ScienceOn
21 Jones, W. D., Nguyen, T.-A. T., Kloss, B., Lee, K. J., and Vosshall, L. B. (2005). Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol. 15, R119-R121   DOI   ScienceOn
22 Robertson, H. M., Warr, C. G., and Carlson, J. R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster . Proc. Natl. Acad. Sci. U.S.A. 100(Suppl 2), 14537-14542   DOI   PUBMED
23 Hill, C. A., Fox, A. N., Pitts, R. J., Kent, L. B., Tan, P. L., Chrystal, M. A., Cravchik, A., Collins, F. H., Robertson, H. M., and Zwiebel, L. J. (2002). G protein-coupled receptors in anopheles gambiae. Science 298, 176-178   DOI   PUBMED   ScienceOn
24 Makino, A., Prossnitz, E. R., B $\ddot{u}$nemann, M., Wang, J. M., Yao, W., and Schmid-Schnbein, G. W. (2006). G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J. Physiol. Cell. Physiol. 290, C1633-C1639   DOI   PUBMED   ScienceOn
25 Bockaert, J., and Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723-1729   DOI   ScienceOn
26 Harrison, P. M., and Gerstein, M. (2002). Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J. Mol. Biol. 318, 155-1174   DOI   ScienceOn
27 Krieger, J., Klink, O., Mohl, C., Raming, K., and Breer, H. (2003). A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 189, 519-526   DOI   ScienceOn
28 Peng, C. K., Buldyrev, S. V., Goldberger, A. L., Havlin, S., Sciortino, F., Simons, M., and Stanley, H. E. (1992). Long-range correlations in nucleotide sequences. Nature 356, 168-170   DOI   ScienceOn
29 Albert, R., Jeong, H., and Barabasi, A.-L. (1999). Diameter of the world-wide web. Nature 401, 130-131   DOI   ScienceOn
30 Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabsi, A. L. (2000). The large-scale organization of metabolic networks. Nature 407, 651-654   DOI   ScienceOn
31 Wallin, E., and von Heijne, G. (1998). Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029-1038   DOI   ScienceOn
32 Kim, H., Meln, K., Osterberg, M., and von Heijne, G. (2006). A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc. Natl. Acad. Sci. U.S.A. 103, 11142-11147   DOI   ScienceOn
33 Martignetti, L., and Caselle, M. (2007). Universal power law behaviors in genomic sequences and evolutionary models. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 021902   DOI   PUBMED
34 Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745   DOI   PUBMED   ScienceOn
35 Daley, D. O., Rapp, M., Granseth, E., Meln, K., Drew, D., and von Heijne, G. (2005). Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321-1323   DOI   PUBMED   ScienceOn
36 Li, W., and Kaneko, K. (1992). Long-range correlation and partial spectrum in a noncoding DNA sequence. Europhys. Lett. 17, 655-660   DOI   ScienceOn
37 Tusnady, G. E., and Simon, I. (1998). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283, 489-506   DOI   ScienceOn
38 Tusnady, G. E., and Simon, I. (2001). Topology of membrane proteins. J. Chem. Inf. Comput. Sci. 41, 364-368   DOI   PUBMED   ScienceOn
39 Voss, R. F. (1992). Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys. Rev Lett. 68, 3805-3808   DOI   PUBMED   ScienceOn
40 Robertson, H. M., and Wanner, K. W. (2006). The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 16, 1395-1403   DOI   ScienceOn