Browse > Article

Simple Sequence Repeat (SSR) and GC Distribution in the Arabidopsis thaliana Genome  

Mortimer Jennifer C (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Department of Plant Sciences, University of Cambridge)
Batley Jacqueline (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)
Love Christopher G (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)
Logan Erica (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)
Edwards David (Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University, Victorian Bioinformatics Consortium, Plant Biotechnology Centre, Primary Industries Research Victoria, La Trobe University)
Publication Information
Journal of Plant Biotechnology / v.7, no.1, 2005 , pp. 17-25 More about this Journal
Abstract
We have mined each of the five A. thaliana chromosomes for the presence of simple sequence repeats (SSRs) and developed custom perl scripts to examine their distribution and abundance in relation to genomic position, local G/C content and location within and around transcribed sequences. The distribution of repeats and G/C content with respect to genomic regions (exons, UTRs, introns, intergenic regions and proximity to expressed genes) are shown. SSRs show a non-random distribution across the genome and a strong association within and around transcribed sequences, while G/C density is associated specifically with the coding portions of transcribed sequences. SSR motif repeat number shows a high degree of variation for each SSR type and a high degree of motif sequence bias reflecting local genome sequence composition. PCR primers suitable for the amplification of identified SSRs have been designed where possible, and are available for further studies.
Keywords
Arabidopsis; GC distribution; Genome Structure; Genome topology; Simple Sequence Repeat (SSR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abajian C (1994) SPUTNIK
2 Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48: 501-510   DOI   ScienceOn
3 Nanda I, Zischler H, Epplen C, Gutlenbach M, Schmid M (1991) Chromosomal organisation of simple repeated DNA Sequences used for DNA fingerprinting. Electrophoresis 12: 193-203   DOI   ScienceOn
4 Sreenu VB, Alevoor V, Nagaraju J, Nagarajaram HA (2003) MICdb: database of prokaryotic microsatellites. Nucleic Acids Res 31: 106-108   DOI   ScienceOn
5 Xu X, Peng M, Fang Z, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24: 396-399   DOI   ScienceOn
6 Moxon ER, Wills C (1999) DNA Microsatellites: Agents of Evolution. Sci Am 280: 94-99   DOI
7 Tautz D, Renz M (1984) Simple sequences as ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12: 4127-4138   DOI   ScienceOn
8 Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silica analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7: 537-546
9 Khashnobish A, Hamann A, Osiewacz HD (1999) Modulation of gene expression by (CA)(n) microsatellites in the filamentous ascomycete Podospora anserina. Applied Microbiol Biotech 52: 191-195   DOI   ScienceOn
10 Robinson AJ, Love CG, Batley J, Barker G, Edwards 0 (2004) Simple sequence repeat marker loci discovery using SSRPrimer. Bioinformatics (In Press)   DOI   ScienceOn
11 Brandes A, Thompson H, Dean C, Heslop-Harrison JS (1997) Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res 5: 238-246   DOI   ScienceOn
12 Weber JL (1990) Informativeness of human $(DC-DA)_n. (DG-DT)_n$ polymorph isms. Genomics 7: 524-530   DOI   PUBMED
13 Pardue ML, Lowenhaupt K, Rich A, Nordheim A (1987) (DCDA)N.(DG-DT)N sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J 6: 1781-1789
14 Ross CL, Dyer KA, Erez T, Miller SJ, Jaenike J, Markow TA (2003) Rapid divergence of microsatellite abundance among species of Drosophila. Mol Biol Evol 20: 1143-1157   DOI   ScienceOn
15 Dieringer D, Schlotterer C (2003) Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Res 1: 2242-2251   DOI   ScienceOn
16 Holland JB, Hellend SJ, Sharopova N, Rhyne DC (2001) Polymorphism of PCR based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44: 1065-1076   DOI   ScienceOn
17 Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1: 215-222   DOI   ScienceOn
18 Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161-1167   DOI   ScienceOn
19 Lowenhaupt KY, Rich A, Pardue ML (1989) Nonrandom distribution of long mono-nucleotide and dinucleotide repeats in Drosophila chromosomes - correlations with dosage compensation, heterochromatin and recombination. Mol Cell Biol 9: 1173-1182   DOI
20 Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contracting mating systems. Mol Biol Evol 14: 1023-1034   DOI   ScienceOn
21 Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89: 998-1006   DOI   ScienceOn
22 Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4: R13   DOI   PUBMED
23 Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453-2465   DOI   ScienceOn
24 Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Nucleic Acids Res 20: 211-215   DOI   ScienceOn
25 Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J 17: 415-425   DOI   ScienceOn
26 Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organisation of microsatellites in sugar beet. Proc Natl Acad Sci USA 93: 8761-8765   DOI
27 Schlctlerer C, Pemberton J (1994) The use of microsatellites for genetic analysis of natural populations. In: Scheirwater B, Streit B, Wagner GP, DeSalie R, (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhauser Verlag Basel, Switzerland, pp 71-86
28 Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13: 74-78   DOI   ScienceOn
29 The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815   DOI   PUBMED   ScienceOn
30 Barakat A, Han DT, Benslimane AA, Rode A, Bernadi G (1999) The gene distribution in the genomes of pea, tomato and date palm. FEBS Lett 463: 139-142   DOI   PUBMED   ScienceOn
31 Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes:survey and analysis. Genome Res 10: 967-981   DOI   ScienceOn
32 Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with non repetitive DNA in plant genomes. Nat Genet 30: 194-200   DOI   ScienceOn
33 Borstnik B, Pumpernik D (2002) Tandem repeats in protein coding regions of primate genes. Genome Res 12: 909-915   DOI   ScienceOn
34 Arhondakis S, Auletta F, Torelli G, D'Onofrio G (2004) Base composition and expression level of human genes. Gene 325: 165-169   DOI   PUBMED   ScienceOn
35 Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17: 6463-6471   DOI   PUBMED   ScienceOn