• 제목/요약/키워드: Genetic reprogramming

검색결과 32건 처리시간 0.022초

Modeling of Human Genetic Diseases Via Cellular, Reprogramming

  • Kang, Min-Yong;Suh, Ji-Hoon;Han, Yong-Mahn
    • Journal of Genetic Medicine
    • /
    • 제9권2호
    • /
    • pp.67-72
    • /
    • 2012
  • The generation of induced pluripotent stem cells (iPSCs) derived from patients' somatic cells provides a new paradigm for studying human genetic diseases. Human iPSCs which have similar properties of human embryonic stem cells (hESCs) provide a powerful platform to recapitulate the disease-specific cell types by using various differentiation techniques. This promising technology has being realized the possibility to explore pathophysiology of many human genetic diseases at the molecular and cellular levels. Furthermore, disease-specific human iPSCs can also be used for patient-based drug screening and new drug discovery at the stage of the pre-clinical test in vitro. In this review, we summarized the concept and history of cellular reprogramming or iPSC generation and highlight recent progresses for disease modeling using patient-specific iPSCs.

Investigating the role of Sirtuins in cell reprogramming

  • Shin, Jaein;Kim, Junyeop;Park, Hanseul;Kim, Jongpil
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.500-507
    • /
    • 2018
  • Cell reprogramming has been considered a powerful technique in the regenerative medicine field. In addition to diverse its strengths, cell reprogramming technology also has several drawbacks generated during the process of reprogramming. Telomere shortening caused by the cell reprogramming process impedes the efficiency of cell reprogramming. Transcription factors used for reprogramming alter genomic contents and result in genetic mutations. Additionally, defective mitochondria functioning such as excessive mitochondrial fission leads to the limitation of pluripotency and ultimately reduces the efficiency of reprogramming. These problems including genomic instability and impaired mitochondrial dynamics should be resolved to apply cell reprograming in clinical research and to address efficiency and safety concerns. Sirtuin (NAD+-dependent histone deacetylase) has been known to control the chromatin state of the telomere and influence mitochondria function in cells. Recently, several studies reported that Sirtuins could control for genomic instability in cell reprogramming. Here, we review recent findings regarding the role of Sirtuins in cell reprogramming. And we propose that the manipulation of Sirtuins may improve defects that result from the steps of cell reprogramming.

Biochemical Characterization of Oligomerization of Escherichia coli GTP Cyclohydrolase I

  • Lee, Soo-Jin;Ahn, Chi-Young;Park, Eung-Sik;Hwang, Deog-Su;Yim, Jeong-Bin
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.255-261
    • /
    • 2002
  • GTP cyclohydrolase I (E.C. 3.5.4.16) is a homodecameric protein that catalyzes the conversion of GTP to 7,8-dihydroneopterin triphosphate (H2NTP), the initial step in the biosynthesis of pteridines. It was proposed that the enzyme complex could be composed of a dimer of two pentamers, or a pentamer of tightly associated dimers; then the active site of the enzyme was located at the interface of three monomers (Nar et al. 1995a, b). Using mutant enzymes that were made by site-directed mutagenesis, we showed that a decamer of GTP cyclohydrolase I should be composed of a pentamer of five dimers, and that the active site is located between dimers, as analyzed by a series of size exclusion chromatography and the reconstitution experiment. We also show that the residues Lys 136, Arg139, and Glu152 are of particular importance for the oligomerization of the enzyme complex from five dimers to a decamer.

Genetic Reprogramming after Somatic Cell cloning

  • Tian, X.Cindy;Xu, Jie;Xue, Fei;Kubota, Chikara;Du, Fuliang;Yang, Xiangzhong
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.43-55
    • /
    • 2002
  • Cloning by nuclear transfer in mammals using somatic cells has enormous potential applications. However, somatic cloning has been inefficient in all species in which NT is successful. High abortion and fetal death rates have been observed. These developmental defects have been attributed to incomplete nuclear reprogramming by the somatic cloning process. In this review, we will discuss studies conducted in our labs to understand the nuclear reprogramming process.

  • PDF

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Oncogene-Driven Metabolic Alterations in Cancer

  • Min, Hye-Young;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.45-56
    • /
    • 2018
  • Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.

Cloning and Characterization of Bovine 5-Cytosine DNA Methyltransferase I cDNA

  • Lee, Poongyeon;Min, Kwan-Sik;Lee, Hyun-Gi;Kim, Soon-Jeung;Chung, Hee-Kyoung;Seo, Myung-Kyu;Lee, Yun-Keun;Kim, Sung-Woo;Park, Jin-Ki
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.39-39
    • /
    • 2003
  • Methylation of DNA 5-cytosine in mammalian early embryo affects great deal in nuclear reprogramming and chromatin remodeling of developing embryo. Current efforts to clone and produce cloned animals including transgenic animals face various problems including low birth rate, irregular development, and so on. In this report, cDNA for the one of house keeping methyltransfcrase, Dnmt1 was cloned from bovine somatic tissues and was analyzed for its nucleotide sequences to investigate the structure and function of the gene in bovine early development. Nucleotide sequence of bovine Dnmt1 homologue showed 76.8% identity with that of human Dnmtl and 66.4% with mouse Dnmt1. Translated amino acid sequence showed 88.4% homology with human homologue and 75.8% homology with mouse counterpart. Three types of Dnmt1 are reported in mouse and human, and are likely present in bovine tissues. Understanding of role of Dnmt1 in bovine development may shed a light in the field of animal, especially bovine cloning.

  • PDF

Factors Affecting the Efficiency of Animal Cloning by Somatic Cell Nuclear Transfer

  • Kim, Min-Goo;Park, Chi-Hun;Lee, Sang-Goo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • 한국수정란이식학회지
    • /
    • 제23권2호
    • /
    • pp.67-76
    • /
    • 2008
  • Since the birth of Dolly using fully differentiated somatic cells as a nuclear donor, viable clones were generated successfully in many mammalian species. These achievements in animal cloning demonstrate developmental potential of terminally differentiated somatic cells. At the same time, the somatic cell nuclear transfer (SCNT) technique provides the opportunities to study basic and applied biosciences. However, the efficiency generating viable offsprings by SCNT remains extremely low. There are several explanations why cloned embryos cannot fully develop into viable animals and what factors affect developmental potency of reconstructed embryos by the SCNT technique. The most critical and persuasive explanation for inefficiency in SCNT cloning is incomplete genomic reprogramming, such as DNA methylation and histone modification. Numerous studies on genomic reprogramming demonstrated that incorrect DNA methylation and aberrant epigenetic reprogramming are considerably correlated with abnormal development of SCNT cloned embryos even though its mechanism is not fully understood. The SCNT technique is useful in cloning farm animals because pluripotent stem cells are not established in farm animal species. Therapeutic cloning combined with genetic manipulation will help to control various human diseases. Also, the SCNT technique provides a chance to overcome excessive demand for the organs by production of transgenic animals as xenotransplantation resources. Here, we describe the factors affecting the efficiency of generating cloned farm animals by the SCNT technique and discuss future directions of animal cloning by SCNT to improve the cloning efficiency.

Piezo-assisted Intracytoplasmic Sperm Injection in Cattle

  • Kim, Se-Woong;Kang, Ho-In;Sung, Ji-Hye;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제25권2호
    • /
    • pp.97-101
    • /
    • 2010
  • Intracytoplasmic sperm injection (ICSI) is one of the artificial fertilization methods when only a few sperm are available for insemination, and an important tool for the preservation of genetic materials of endangered animal species, especially the male is infertile. Different from other species such as mice and pigs, the conventional ICSI method which uses spiked pipette for injection (Spike-ICSI) is exhibited low success rates in cattle because the bovinesperm head membrane is hard to break during injection procedure. We chose piezo-assisted ICSI (Piezo-ICSI) for the improvement of the injection procedure including sperm head membrane rupture and efficient puncture of the plasma membrane of the oocytes. In this experiment, we compared the efficacy of the bovine ICSI embryo production between the Piezo-ICSI and Spike-ICSI. The second polar body extrusion, pronuclear formation, cleavage and blastocyst formation were evaluated after implementation of two different ICSI techniques. The Piezo-ICSI tended to show comparably higher rates of the second polar body extrusion (41.7%), the pronuclei formation (42.9%) and the two-cell cleavage (41.4%) than Spike-ICSI does (33.3%, 28.6% and 23.5%, respectively) although there is no statistic significance between two groups. In addition, the blastocysts were only obtained from the Piezo-ICSI group (10.3%). Our finding shows that the Piezo-ICSI may be used as an artificial fertilization method in cattle when in vitro fertilization is not applicable.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.