Factors Affecting the Efficiency of Animal Cloning by Somatic Cell Nuclear Transfer

  • Kim, Min-Goo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Chi-Hun (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang-Goo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Seo, Hee-Won (Department of Biological Resources and Technology, and Institute of Biomaterials, Yonsei University) ;
  • Choi, Yo-Han (Department of Biological Resources and Technology, and Institute of Biomaterials, Yonsei University) ;
  • Lee, Chang-Kyu (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Ka, Hak-Hyun (Department of Biological Resources and Technology, and Institute of Biomaterials, Yonsei University)
  • Published : 2008.06.30

Abstract

Since the birth of Dolly using fully differentiated somatic cells as a nuclear donor, viable clones were generated successfully in many mammalian species. These achievements in animal cloning demonstrate developmental potential of terminally differentiated somatic cells. At the same time, the somatic cell nuclear transfer (SCNT) technique provides the opportunities to study basic and applied biosciences. However, the efficiency generating viable offsprings by SCNT remains extremely low. There are several explanations why cloned embryos cannot fully develop into viable animals and what factors affect developmental potency of reconstructed embryos by the SCNT technique. The most critical and persuasive explanation for inefficiency in SCNT cloning is incomplete genomic reprogramming, such as DNA methylation and histone modification. Numerous studies on genomic reprogramming demonstrated that incorrect DNA methylation and aberrant epigenetic reprogramming are considerably correlated with abnormal development of SCNT cloned embryos even though its mechanism is not fully understood. The SCNT technique is useful in cloning farm animals because pluripotent stem cells are not established in farm animal species. Therapeutic cloning combined with genetic manipulation will help to control various human diseases. Also, the SCNT technique provides a chance to overcome excessive demand for the organs by production of transgenic animals as xenotransplantation resources. Here, we describe the factors affecting the efficiency of generating cloned farm animals by the SCNT technique and discuss future directions of animal cloning by SCNT to improve the cloning efficiency.

Keywords

References

  1. Amano T, Tani T, Kato Y and Tsunoda Y. 2001. Mouse cloned from embryonic stem (ES) cells synchronized in metaphase with nocodazole. J. Exp. Zool. 289:139-145 https://doi.org/10.1002/1097-010X(20010201)289:2<139::AID-JEZ7>3.0.CO;2-6
  2. Barnes FL, Crombie A, Gardner DK, Kausche A, Lacham-Kaplan O, Suikkari AM, Tiglias J, Wood C and Trounson A. 1995. Blastocyst development and birth after in vitro maturation of human primary oocytes, intracytoplasmatic injection and assisted hatching. Hum. Reprod. 10:3243-3247 https://doi.org/10.1093/oxfordjournals.humrep.a135896
  3. Bestor TH. 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO. J. 11:2611-2617
  4. Bestor TH. 2000. The DNA methyltransferases of mammals. Hum. Mol. Genet. 9:2395-2402 https://doi.org/10.1093/hmg/9.16.2395
  5. Betthauser J, Forsberg E, Augenstein M, Childs L, Eilertsen K, Enos J, Forsythe T, Golueke P, Jurgella G, Koppang R, Lesmeister T, Mallon K, Mell G, Misica P, Pace M, Pfister- Genskow M, Strelchenko N, Voelker G, Watt S, Thompson S and Bishop M. 2000. Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18:1055-1059 https://doi.org/10.1038/80242
  6. Bhak JS, Lee SL, Ock SA, Mohana KB, Choe SY and Rho GJ. 2006. Developmental rate and ploidy of embryos produced by nuclear transfer with different activation treatments in cattle. Anim. Reprod. Sci. 92:37-49 https://doi.org/10.1016/j.anireprosci.2005.04.016
  7. Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes. Dev. 16:6-21 https://doi.org/10.1101/gad.947102
  8. Boquest AC, Day BN and Prather RS. 1999. Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod. 60:1013-1019 https://doi.org/10.1095/biolreprod60.4.1013
  9. Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP and Viegas-Pequignot E. 2001. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11:1542-1546 https://doi.org/10.1016/S0960-9822(01)00480-8
  10. Briggs R and King TJ. 1952. Transplantation of living nuclei from blastula cells into enucleated frog's eggs. Proc. Natl. Acad. Sci. U.S.A. 38:455-461
  11. Byrne JA, Simonsson S, Western PS and Gurdon JB. 2003. Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr. Biol. 13:1206-1213 https://doi.org/10.1016/S0960-9822(03)00462-7
  12. Campbell KHS, Alberio R, Choi I, Fisher P, Klly RDW, Lee JH and Maalouf W. 2005. Cloning: Eight years after Dolly. Reprod. Dom. Anim. 40:256-268 https://doi.org/10.1111/j.1439-0531.2005.00591.x
  13. Chatot CL, Ziomek CA, Bavister BD, Lewis JL and Torres I. 1989. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86: 679-688 https://doi.org/10.1530/jrf.0.0860679
  14. Cibelli JB, Stice S, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de Leon FA and Robl JL. 1998. Cloned transgenic calves produced from non-quiescent fetal fibroblasts. Science 280:1256-1258 https://doi.org/10.1126/science.280.5367.1256
  15. Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E and Reik W. 2001. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. U.S.A. 98:13734-13738
  16. Dindot SV, Farin PW, Farin CE, Romano J, Walker S, Long C and Piedrahita JA. 2004. Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod. 71:470-478 https://doi.org/10.1095/biolreprod.103.025775
  17. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS and Schultz RM. 2000. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62:1526-35 https://doi.org/10.1095/biolreprod62.6.1526
  18. Eggan K, Baldwin K, Tackett M, Osborne J, Gogos J, Chess A, Axel R and Jaenisch R. 2004. Mice cloned from olfactory sensory neurons. Nature 428:44-49 https://doi.org/10.1038/nature02375
  19. Elsheikh AS, Takahashi Y, Katagiri S and Kanagawa H. 1998. Functional enucleation of mouse metaphase II oocytes with etoposide. Jpn. J. Vet. Res. 45:217-220
  20. Erbach GT, Lawitts JA, Papaioannou VE and Biggers JD. 1994. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod. 50:1027-1033 https://doi.org/10.1095/biolreprod50.5.1027
  21. Farin PW, Piedrahita JA and Farin CE. 2006. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65:178-191 https://doi.org/10.1016/j.theriogenology.2005.09.022
  22. Forsberg EJ, Strelchenko NS, Augenstein ML, Betthauser JM, Childs LA, Eilertsen KJ, Enos JM, Forsythe TM, Golueke PJ, Koppang RW, Lange G, Lesmeister TL, Mallon KS, Mell GD, Misica PM, Pace MM, Pfister-Genskow M, Voelker GR, Watt SR and Bishop MD. 2002. Production of cloned cattle from in vitro systems. Biol. Reprod. 67:327-333 https://doi.org/10.1095/biolreprod67.1.327
  23. Fulka J Jr and Moor RM. 1993. Noninvasive chemical enucleation of mouse oocytes. Mol. Reprod. Dev. 34:427-430 https://doi.org/10.1002/mrd.1080340412
  24. Gurdon JB. 1962. Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4: 256-273 https://doi.org/10.1016/0012-1606(62)90043-X
  25. Han YM, Kang YK, Koo DB and Lee KK. 2003. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59:33-44 https://doi.org/10.1016/S0093-691X(02)01271-2
  26. Hansis C, Barreto G, Maltry N and Niehrs C. 2004. Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr. Biol. 14:1475-1480 https://doi.org/10.1016/j.cub.2004.08.031
  27. Heard E. 2004. Recent advances in X-chromosome inactivation. Curr. Opin. Cell. Biol. 16:247-255 https://doi.org/10.1016/j.ceb.2004.03.005
  28. Hill JR, Burghardt RC, Jones K, Long CR, Looney CR, Shin T, Spencer TE, Thompson JA, Winger QA and Westhusin ME. 2000. Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63:1787-1794 https://doi.org/10.1095/biolreprod63.6.1787
  29. Hill JR, Roussel AJ, Cibelli JB, Edwards JF, Hooper NL, Miller MW, Thompson JA, Looney CR, Westhusin ME, Robl JM and Stice SL. 1999. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51:1451-1465 https://doi.org/10.1016/S0093-691X(99)00089-8
  30. Hinrichs K, Choi YH, Walckenaer BE, Varner DD and Hartman DL. 2007. In vitro-produced equine embryos: Production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture. Theriogenology 68:521-529 https://doi.org/10.1016/j.theriogenology.2007.04.046
  31. Hochedlinger K and Jaenisch R. 2002. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415:1035-1038 https://doi.org/10.1038/nature718
  32. Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM III, Biniszkiewicz D, Yanagimachi R and Jaenisch R. 2001. Epigenetic instability in ES cells and cloned mice. Science 293:95-97 https://doi.org/10.1126/science.1061402
  33. Hussein TS, Thompson JG and Gilchrist RB. 2006. Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296:514-521 https://doi.org/10.1016/j.ydbio.2006.06.026
  34. Ibanez E, Albertini DF and Overstrom EW. 2003. Demecolcineinduced oocyte enucleation for somatic cell cloning: Coordination between cell-cycle egress, kinetics of cortical cytoskeletal interactions, and second polar body extrusion. Biol. Reprod. 68:1249-1258 https://doi.org/10.1095/biolreprod.102.008292
  35. Im GS, Lai L, Liu Z, Hao Y, Wax D, Bonk A and Prather RS. 2004. In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres. Theriogenology 61:1125-1135 https://doi.org/10.1016/j.theriogenology.2003.06.006
  36. Jaenisch R. 1997. DNA methylation and imprinting: Why bother? Trends. Genet. 13:323-329 https://doi.org/10.1016/S0168-9525(97)01180-3
  37. Jones KT, Carroll J and Whittingham DG. 1995. Ionomycin, thapsigargin, ryanodine, and sperm induced $Ca^{2+}$ release increase during meiotic maturation of mouse oocytes. J. Biol. Chem. 270:6671-6677 https://doi.org/10.1074/jbc.270.12.6671
  38. Ka H, Seo H, Kim M, Moon S, Kim H and Lee CK. 2007. Gene expression profiling of the uterus with embryos cloned by somatic cell nuclear transfer on day 30 of pregnancy. Anim. Reprod. Sci. doi:10.1016/j.anireprosci.2007.07.008
  39. Kang YK, Koo DB, Park JS, Choi YH, Chung AS, Lee KK and Han YM. 2001a. Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28:173-177 https://doi.org/10.1038/88903
  40. Kang YK, Koo DB, Park JS, Choi YH, Kim HN, Chang WK, Lee KK and Han YM. 2001b. Typical demethylation events in cloned pig embryos. Clues on speciesspecific differences in epigenetic reprogramming of a cloned donor genome. J. Biol. Chem. 276:39980-39984 https://doi.org/10.1074/jbc.M106516200
  41. Kang YK, Park JS, Koo DB, Choi YH, Kim SU, Lee KK and Han YM. 2002. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO. J. 21:1092-1100 https://doi.org/10.1093/emboj/21.5.1092
  42. Kim M, Seo H, Choi Y, Hwang W, Lee CK and Ka H. 2008. Aberrant expression of retinol-binding protein, osteopontin and fibroblast growth factor 7 in the porcine uterine endometrium of pregnant recipients carrying embryos produced by somatic cell nuclear transfer. Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2008.04.029
  43. Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan NV, Wakayama S, Bui HT and Wakayama T. 2006. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340:183-189 https://doi.org/10.1016/j.bbrc.2005.11.164
  44. Kues WA, Anger M, Carnwath JW, Paul D, Motlik J and Niemann H. 2000. Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62:412-419 https://doi.org/10.1095/biolreprod62.2.412
  45. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ and Prather RS. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-92 https://doi.org/10.1126/science.1068228
  46. Lanza RP, Cibelli JB, Moraes CT, Farin PW, Farin CE, Hammer CJ, West MD and Damiani P. 2000. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2:79-90 https://doi.org/10.1089/152045500436104
  47. Li GP, White KL and Bunch TD. 2004. Review of enucleation methods and procedures used in animal cloning: State of the art. Cloning Stem Cells 6:5-13 https://doi.org/10.1089/15362300460743781
  48. Liu L and Yang X. 1999. Interplay of maturation-promoting factor and mitogen-activated protein kinase inactivation during metaphase-to-interphase transition of activated bovine oocytes. Biol. Reprod. 61:1-7 https://doi.org/10.1095/biolreprod61.1.1
  49. Loi P, Ptak G, Barboni B, Fulka J Jr, Cappai P and Clinton M. 2001. Genetic rescue of an endangered mammal by crossspecies nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19:962-964 https://doi.org/10.1038/nbt1001-962
  50. Machaty Z, Day BN and Prather RS. 1998. Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59:451-455 https://doi.org/10.1095/biolreprod59.2.451
  51. Mann MR, Chung YG, Nolen LD, Verona RI, Latham KE and Bartolomei MS. 2003. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69:902-914 https://doi.org/10.1095/biolreprod.103.017293
  52. Matsuyama K, Miyakoshi H and Fukui Y. 1993. Effect of glucose levels during the in vitro culture in synthetic oviduct fluid medium on in vitro development of bovine oocytes matured and fertilized in vitro. Theriogenology 40: 595-605 https://doi.org/10.1016/0093-691X(93)90412-X
  53. McGrath J and Solter D. 1983. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220:1300-1302 https://doi.org/10.1126/science.6857250
  54. Medvedev S, Onishi A, Fuchimoto D, Iwamoto M and Nagai T. 2004. Advanced in vitro production of pig blastocysts obtained through determining the time for glucose supplementation. J. Reprod. Dev. 50:71-76 https://doi.org/10.1262/jrd.50.71
  55. Menezo YJ and Herubel F. 2002. Mouse and bovine models for human IVF. Reprod. Biomed. Online. 4:170-175
  56. Miyazaki S, Shirakawa H, Nakada K and Honda Y. 1993. Essential role of the inositol 1,4,5-trisphosphate receptor/ $Ca^{2+}$ release channel in $Ca^{2+}$ waves and $Ca^{2+}$ oscillations at fertilization of mammalian eggs. Dev. Biol. 158:62-78 https://doi.org/10.1006/dbio.1993.1168
  57. Nussbaum DJ and Prather RS. 1995. Differential effects of protein synthesis inhibitors on porcine oocyte activation. Mol. Reprod. Dev. 41:70-75 https://doi.org/10.1002/mrd.1080410111
  58. Oback B and Wells DN. 2007. Donor cell differentiation, reprogramming, and cloning efficiency: Elusive or illusive correlation? Mol. Reprod. Dev. 74:646-654 https://doi.org/10.1002/mrd.20654
  59. Okano M, Bell DW, Haber DA and Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99:247-257 https://doi.org/10.1016/S0092-8674(00)81656-6
  60. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW and Daley GQ. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141-146 https://doi.org/10.1038/nature06534
  61. Pinkert CA. 1994. Transgenic pig models for xenotranplantation. Xeno. 2:10-15
  62. Polejaeva IA, Chen SH, Vaught TD, Page RL, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares DL, Colman A and Campbell KHS. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86-90 https://doi.org/10.1038/35024082
  63. Prather RS, Sims MM and First NL. 1989. Nuclear transplantation in early pig embryos. Biol. Reprod. 41:414-418 https://doi.org/10.1095/biolreprod41.3.414
  64. Presicce GA and Yang X. 1994. Parthenogenetic development of bovine oocytes matured in vitro for 24 hr and activated by ethanol and cycloheximide. Mol. Reprod. Dev. 38:380-385 https://doi.org/10.1002/mrd.1080380405
  65. Ravelich SR, Breier BH, Reddy S, Keelan JA, Wells DN, Peterson AJ and Lee RS. 2004a. Insulin-like growth factor- I and binding proteins 1, 2, and 3 in bovine nuclear transfer pregnancies. Biol. Reprod. 70:430-438 https://doi.org/10.1095/biolreprod.103.021139
  66. Ravelich SR, Shelling AN, Ramachandran A, Reddy S, Keelan JA, Wells DN, Peterson AJ, Lee RS and Breier BH. 2004b. Altered placental lactogen and leptin expression in placentomes from bovine nuclear transfer pregnancies. Biol. Reprod. 71:1862-1829 https://doi.org/10.1095/biolreprod.104.032201
  67. Ravelich SR, Shelling AN, Wells DN, Peterson AJ, Lee RS, Ramachandran A and Keelan JA. 2006. Expression of TGFbeta1, TGF-beta2, TGF-beta3 and the receptors TGF-betaRI and TGF-betaRII in placentomes of artificially inseminated and nuclear transfer derived bovine pregnancies. Placenta 27:307-316 https://doi.org/10.1016/j.placenta.2005.03.002
  68. Reik W, Dean W and Walter J. 2001. Epigenetic reprogramming in mammalian development. Science 293:1089-1093 https://doi.org/10.1126/science.1063443
  69. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB and Schuebel KE. 20000. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 404:1003-1007 https://doi.org/10.1038/35010000
  70. Ribas R, Oback B, Ritchie W, Chebotareva T, Taylor J, Maurício AC, Sousa M and Wilmut I. 2006. Modifications to improve the efficiency of zona-free mouse nuclear transfer. Cloning Stem Cells 8:10-15 https://doi.org/10.1089/clo.2006.8.10
  71. Sanford JP, Clark HJ, Chapman VM and Rossant J. 1987. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes. Dev. 1:1039-1046 https://doi.org/10.1101/gad.1.10.1039
  72. Santos F, Hendrich B, Reik W and Dean W. 2002. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241:172-182 https://doi.org/10.1006/dbio.2001.0501
  73. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K and Lai FA. 2002. PLC zeta: a spermspecific trigger of $Ca^{(2+)}$ oscillations in eggs and embryo development. Dev. 129:3533-3544
  74. Shi W and Haaf T. 2002. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63:329-334 https://doi.org/10.1002/mrd.90016
  75. Sinclair KD, Maxfield EK, Robinson JJ, Maltin CA, McEvoy TG, Dunne LD, Young LE and Broadbent PJ. 1997. Culture of sheep zygotes can alter fetal growth and development. Theriogenology 47:380 https://doi.org/10.1016/S0093-691X(97)82507-1
  76. Spemann H. 1938. Embryonic Development and Induction.Hafner Publishing Company, New York, U.S.A., pp. 210-211
  77. Steinhardt RA and Epel D. 1974. Activation of sea-urchin eggs by a calcium ionophore. Proc. Natl. Acad. Sci. U.S.A. 71:1915-1919
  78. Swain JE, Bormann CL and Krisher RL. 2001. Development and viability of in vitro derived porcine blastocysts cultured in NCSU23 and G1.2/G2.2 sequential medium. Theriogenology 56:459-469 https://doi.org/10.1016/S0093-691X(01)00577-5
  79. Takahashi K and Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676 https://doi.org/10.1016/j.cell.2006.07.024
  80. Tanaka H and Kanagawa H. 1997. Influence of combined activation treatments on the success of bovine nuclear transfer using young or aged oocytes. Anim. Reprod. Sci. 49: 113-123 https://doi.org/10.1016/S0378-4320(97)00070-5
  81. Thompson JG. 2000. In vitro culture and embryo metabolism of cattle and sheep embryos - a decade of achievement. Anim. Reprod. Sci. 60-61:263-275 https://doi.org/10.1016/S0378-4320(00)00096-8
  82. Vajta G and Gjerris M. 2006. Science and technology of farm animal cloning: Stat of art. Anim. Reprod. Sci. 92:211-230 https://doi.org/10.1016/j.anireprosci.2005.12.001
  83. Vajta G, Zhang Y and Machaty Z. 2007. Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprd. Fertil. Dev. 19:403-423 https://doi.org/10.1071/RD06089
  84. Van der Auwera I and D'Hooghe T. 2001. Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16:1237-1243 https://doi.org/10.1093/humrep/16.6.1237
  85. Wakayama T, Perry AC, Zuccotti M, Johnson KR and Yanagimachi R. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374 https://doi.org/10.1038/28615
  86. Wakayama T, Rodriguez I, Perry AC, Yanagimachi R and Mombaerts P. 1999. Mice cloned from embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 96:14984-14989
  87. Wakayama T. 2007. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: How to improve cloning efficiency? J. Reprod. Dev. 53:13-26 https://doi.org/10.1262/jrd.18120
  88. Walker SK, Hartwich KM, Robinson JS, Seamark RF. Influence of in vitro culture of embryos on the normality of development. In: Lauria, A., Gandolfi, F., Enne, G., Gianaroli, L. (Eds.). 1998. Gemetes: Development and Function. Serono Symposia, Italy, pp. 457-484
  89. Walker SK, Heard TM and Seamark RF. 1992. In vitro culture of sheep embryos without co-culture: successes and perspectives. Theriogenology 37:111-126 https://doi.org/10.1016/0093-691X(92)90250-U
  90. Wang MK, Liu JL, Li GP, Lian L and Chen DY. 2001. Sucrose pretreatment for enucleation: an efficient and non-damage method for removing the spindle of the mouse MII oocyte. Mol. Reprod. Dev. 58:432-436 https://doi.org/10.1002/1098-2795(20010401)58:4<432::AID-MRD11>3.0.CO;2-Y
  91. Wells DN, Laible G, Tucker FC, Miller AL, Oliver JE, Xiang T, Forsyth JT, Berg MC, Cockrem K, L'Huillier PJ, Tervit HR and Oback B. 2003. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59:45-59 https://doi.org/10.1016/S0093-691X(02)01273-6
  92. Wilmut I, Schnieke AE, McWhir J, Kind AJ and Campbell KHS. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385:810-813 https://doi.org/10.1038/385810a0
  93. Yang X, Presicce GA, Moraghan L, Jiang S and Foote RH. 1994. Synergistic effect of ethanol and cycloheximide on activation of freshly matured bovine oocytes. Theriogenology 41:395-403 https://doi.org/10.1016/0093-691X(94)90075-T
  94. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I and Sinclair KD. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27:153-154 https://doi.org/10.1038/84769
  95. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y, Fraichard A and Cozzi J. 2003. Generation of fertile cloned rats by regulating oocyte activation. Science 302:1179 https://doi.org/10.1126/science.1088313
  96. Zimmermann U and Vienken J. 1982. Electric field-induced cell-to-cell fusion. J. Membr. Biol. 67:165-182 https://doi.org/10.1007/BF01868659