Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.211

Oncogene-Driven Metabolic Alterations in Cancer  

Min, Hye-Young (Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University)
Lee, Ho-Young (Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 45-56 More about this Journal
Abstract
Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.
Keywords
Cancer; Non-small cell lung cancer; Cancer metabolism; Metabolic reprogramming; Aerobic glycolysis; Oncogenic alteration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Baracca, A., Chiaradonna, F., Sgarbi, G., Solaini, G., Alberghina, L. and Lenaz, G. (2010) Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim. Biophys. Acta 1797, 314-323.   DOI
2 Beckers, A., Organe, S., Timmermans, L., Scheys, K., Peeters, A., Brusselmans, K., Verhoeven, G. and Swinnen, J. V. (2007) Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180-8187.   DOI
3 Benjamin, D., Colombi, M., Moroni, C. and Hall, M. N. (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 10, 868-880.   DOI
4 Bensaad, K. and Harris, A. L. (2013) Cancer metabolism as a therapeutic target: metabolic synthetic lethality. Oncology (Williston Park, N.Y.) 27, 467, 473-474.
5 Brunelli, L., Caiola, E., Marabese, M., Broggini, M. and Pastorelli, R. (2014) Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells. Oncotarget 5, 4722-4731.
6 Brunelli, L., Caiola, E., Marabese, M., Broggini, M. and Pastorelli, R. (2016) Comparative metabolomics profiling of isogenic KRAS wild type and mutant NSCLC cells in vitro and in vivo. Sci. Rep. 6, 28398.   DOI
7 Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543-550.   DOI
8 Carracedo, A., Cantley, L. C. and Pandolfi, P. P. (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-232.   DOI
9 Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C. and Kimmelman, A. C. (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105.   DOI
10 Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170.   DOI
11 Zhang, J., Fan, J., Venneti, S., Cross, J. R., Takagi, T., Bhinder, B., Djaballah, H., Kanai, M., Cheng, E. H., Judkins, A. R., Pawel, B., Baggs, J., Cherry, S., Rabinowitz, J. D. and Thompson, C. B. (2014a) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205-218.   DOI
12 Zhang, J., Song, F., Zhao, X., Jiang, H., Wu, X., Wang, B., Zhou, M., Tian, M., Shi, B., Wang, H., Jia, Y., Wang, H., Pan, X. and Li, Z. (2017) EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol. Cancer 16, 127.   DOI
13 Zhang, W. C., Shyh-Chang, N., Yang, H., Rai, A., Umashankar, S., Ma, S., Soh, B. S., Sun, L. L., Tai, B. C., Nga, M. E., Bhakoo, K. K., Jayapal, S. R., Nichane, M., Yu, Q., Ahmed, D. A., Tan, C., Sing, W. P., Tam, J., Thirugananam, A., Noghabi, M. S., Pang, Y. H., Ang, H. S., Mitchell, W., Robson, P., Kaldis, P., Soo, R. A., Swarup, S., Lim, E. H. and Lim, B. (2012) Glycine decarboxylase activity drives nonsmall cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259-272.   DOI
14 Ji, H., Ramsey, M. R., Hayes, D. N., Fan, C., McNamara, K., Kozlowski, P., Torrice, C., Wu, M. C., Shimamura, T., Perera, S. A., Liang, M. C., Cai, D., Naumov, G. N., Bao, L., Contreras, C. M., Li, D., Chen, L., Krishnamurthy, J., Koivunen, J., Chirieac, L. R., Padera, R. F., Bronson, R. T., Lindeman, N. I., Christiani, D. C., Lin, X., Shapiro, G. I., Janne, P. A., Johnson, B. E., Meyerson, M., Kwiatkowski, D. J., Castrillon, D. H., Bardeesy, N., Sharpless, N. E. and Wong, K. K. (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807-810.   DOI
15 Carretero, J., Medina, P. P., Blanco, R., Smit, L., Tang, M., Roncador, G., Maestre, L., Conde, E., Lopez-Rios, F., Clevers, H. C. and Sanchez-Cespedes, M. (2007) Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26, 1616-1625.   DOI
16 Izzo, F., Marra, P., Beneduce, G., Castello, G., Vallone, P., De Rosa, V., Cremona, F., Ensor, C. M., Holtsberg, F. W., Bomalaski, J. S., Clark, M. A., Ng, C. and Curley, S. A. (2004) Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J. Clin. Oncol. 22, 1815-1822.   DOI
17 Jeon, Y. J., Khelifa, S., Ratnikov, B., Scott, D. A., Feng, Y., Parisi, F., Ruller, C., Lau, E., Kim, H., Brill, L. M., Jiang, T., Rimm, D. L., Cardiff, R. D., Mills, G. B., Smith, J. W., Osterman, A. L., Kluger, Y. and Ronai, Z. A. (2015) Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies. Cancer Cell 27, 354-369.   DOI
18 Katayama, R., Lovly, C. M. and Shaw, A. T. (2015) Therapeutic targeting of anaplastic lymphoma kinase in lung cancer: a paradigm for precision cancer medicine. Clin. Cancer Res. 21, 2227-2235.   DOI
19 Kawada, K., Toda, K. and Sakai, Y. (2017) Targeting metabolic reprogramming in KRAS-driven cancers. Int. J. Clin. Oncol. 22, 651-659.   DOI
20 Gouw, A. M., Eberlin, L. S., Margulis, K., Sullivan, D. K., Toal, G. G., Tong, L., Zare, R. N. and Felsher, D. W. (2017) Oncogene KRAS activates fatty acid synthase, resulting in specific ERK and lipid signatures associated with lung adenocarcinoma. Proc. Natl. Acad. Sci. U.S.A. 114, 4300-4305.   DOI
21 Gray, L. R., Tompkins, S. C. and Taylor, E. B. (2014) Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 71, 2577-2604.   DOI
22 Grewe, M., Gansauge, F., Schmid, R. M., Adler, G. and Seufferlein, T. (1999) Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Res. 59, 3581-3587.
23 Gridelli, C., Rossi, A., Carbone, D. P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L. and Rosell, R. (2015) Non-smallcell lung cancer. Nat. Rev. Dis. Primers 1, 15009.
24 Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
25 Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C., Frederick, D. T., Hurley, A. D., Nellore, A., Kung, A. L., Wargo, J. A., Song, J. S., Fisher, D. E., Arany, Z. and Widlund, H. R. (2013) Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302-315.   DOI
26 Hassanein, M., Qian, J., Hoeksema, M. D., Wang, J., Jacobovitz, M., Ji, X., Harris, F. T., Harris, B. K., Boyd, K. L., Chen, H., Eisenberg, R. and Massion, P. P. (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer 137, 1587-1597.   DOI
27 Meng, D., Yuan, M., Li, X., Chen, L., Yang, J., Zhao, X., Ma, W. and Xin, J. (2013) Prognostic value of K-RAS mutations in patients with non-small cell lung cancer: a systematic review with meta-analysis. Lung Cancer 81, 1-10.   DOI
28 Kempf, E., Rousseau, B., Besse, B. and Paz-Ares, L. (2016) KRAS oncogene in lung cancer: focus on molecularly driven clinical trials. Eur. Respir. Rev. 25, 71-76.   DOI
29 Kerr, E. M. and Martins, C. P. (2017) Metabolic rewiring in mutant Kras lung cancer. FEBS J. doi: 10.1111/febs.14125 [Epub ahead of print].   DOI
30 Hatzivassiliou, G., Zhao, F., Bauer, D. E., Andreadis, C., Shaw, A. N., Dhanak, D., Hingorani, S. R., Tuveson, D. A. and Thompson, C. B. (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311-321.   DOI
31 Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K. and Ishikawa, Y. (2008) ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554.
32 Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. and Adjei, A. A. (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584-594.   DOI
33 Momcilovic, M., Bailey, S. T., Lee, J. T., Fishbein, M. C., Magyar, C., Braas, D., Graeber, T., Jackson, N. J., Czernin, J., Emberley, E., Gross, M., Janes, J., Mackinnon, A., Pan, A., Rodriguez, M., Works, M., Zhang, W., Parlati, F., Demo, S., Garon, E., Krysan, K., Walser, T. C., Dubinett, S. M., Sadeghi, S., Christofk, H. R. and Shackelford, D. B. (2017) Targeted inhibition of EGFR and glutaminase induces metabolic crisis in EGFR mutant lung cancer. Cell Rep. 18, 601-610.   DOI
34 Mondesir, J., Willekens, C., Touat, M. and de Botton, S. (2016) IDH1 and IDH2 mutations as novel therapeutic targets: current perspectives. J. Blood Med. 7, 171-180.   DOI
35 Moran, D. M., Trusk, P. B., Pry, K., Paz, K., Sidransky, D. and Bacus, S. S. (2014) KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 13, 1611-1624.
36 Storozhuk, Y., Hopmans, S. N., Sanli, T., Barron, C., Tsiani, E., Cutz, J. C., Pond, G., Wright, J., Singh, G. and Tsakiridis, T. (2013) Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 108, 2021-2032.   DOI
37 Nagarajan, A., Malvi, P. and Wajapeyee, N. (2016) Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2, 365-377.   DOI
38 Newman, A. C. and Maddocks, O. D. K. (2017) One-carbon metabolism in cancer. Br. J. Cancer 116, 1499-1504.   DOI
39 Spees, J. L., Olson, S. D., Whitney, M. J. and Prockop, D. J. (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. U.S.A. 103, 1283-1288.   DOI
40 Stolze, B., Reinhart, S., Bulllinger, L., Frohling, S. and Scholl, C. (2015) Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep. 5, 8535.   DOI
41 Swanton, C. and Govindan, R. (2016) Clinical implications of genomic discoveries in lung cancer. N. Engl. J. Med. 374, 1864-1873.   DOI
42 Zhang, Y., Storr, S. J., Johnson, K., Green, A. R., Rakha, E. A., Ellis, I. O., Morgan, D. A. and Martin, S. G. (2014b) Involvement of metformin and AMPK in the radioresponse and prognosis of luminal versus basal-like breast cancer treated with radiotherapy. Oncotarget 5, 12936-12949.
43 Chaudhri, V. K., Salzler, G. G., Dick, S. A., Buckman, M. S., Sordella, R., Karoly, E. D., Mohney, R., Stiles, B. M., Elemento, O., Altorki, N. K. and McGraw, T. E. (2013) Metabolic alterations in lung cancerassociated fibroblasts correlated with increased glycolytic metabolism of the tumor. Mol. Cancer Res. 11, 579-592.   DOI
44 Chen, P.-H., Cai, L., Kim, H. S., Britt, R., Xiao, G., White, M. A., Minna, J. D. and DeBerardinis, R. J. (2014) Metabolic diversity in human non-small cell lung cancer. Cancer Metab. 2, P13.   DOI
45 Chiaradonna, F., Sacco, E., Manzoni, R., Giorgio, M., Vanoni, M. and Alberghina, L. (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25, 5391-5404.   DOI
46 Choi, H., Paeng, J. C., Kim, D. W., Lee, J. K., Park, C. M., Kang, K. W., Chung, J. K. and Lee, D. S. (2013) Metabolic and metastatic characteristics of ALK-rearranged lung adenocarcinoma on FDG PET/CT. Lung Cancer 79, 242-247.   DOI
47 Svensson, R. U., Parker, S. J., Eichner, L. J., Kolar, M. J., Wallace, M., Brun, S. N., Lombardo, P. S., Van Nostrand, J. L., Hutchins, A., Vera, L., Gerken, L., Greenwood, J., Bhat, S., Harriman, G., Westlin, W. F., Harwood, H. J., Jr., Saghatelian, A., Kapeller, R., Metallo, C. M. and Shaw, R. J. (2016) Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med. 22, 1108-1119.   DOI
48 Svensson, R. U. and Shaw, R. J. (2016) Lipid synthesis is a metabolic liability of non-small cell lung cancer. Cold Spring Harb. Symp. Quant. Biol. 81, 93-103.   DOI
49 Swietach, P., Vaughan-Jones, R. D. and Harris, A. L. (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Rev. 26, 299-310.
50 Taylor, C. W., Dorr, R. T., Fanta, P., Hersh, E. M. and Salmon, S. E. (2001) A phase I and pharmacodynamic evaluation of polyethylene glycol-conjugated L-asparaginase in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 47, 83-88.   DOI
51 Kim, J., Hu, Z., Cai, L., Li, K., Choi, E., Faubert, B., Bezwada, D., Rodriguez-Canales, J., Villalobos, P., Lin, Y.-F., Ni, M., Huffman, K. E., Girard, L., Byers, L. A., Unsal-Kacmaz, K., Peña, C. G., Heymach, J. V., Wauters, E., Vansteenkiste, J., Castrillon, D. H., Chen, B. P. C., Wistuba, I., Lambrechts, D., Xu, J., Minna, J. D. and DeBerardinis, R. J. (2017) CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature 546, 168-172.   DOI
52 Zhang, Z., Stiegler, A. L., Boggon, T. J., Kobayashi, S. and Halmos, B. (2010) EGFR-mutated lung cancer: a paradigm of molecular oncology. Oncotarget 1, 497-514.
53 Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM) (2013) A genomics-based classification of human lung tumors. Sci. Transl. Med. 5, 209ra153.
54 Cloughesy, T. F., Yoshimoto, K., Nghiemphu, P., Brown, K., Dang, J., Zhu, S., Hsueh, T., Chen, Y., Wang, W., Youngkin, D., Liau, L., Martin, N., Becker, D., Bergsneider, M., Lai, A., Green, R., Oglesby, T., Koleto, M., Trent, J., Horvath, S., Mischel, P. S., Mellinghoff, I. K. and Sawyers, C. L. (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8.   DOI
55 Cox, A. D. and Der, C. J. (2010) Ras history: The saga continues. Small GTPases 1, 2-27.   DOI
56 Dang, L., Jin, S. and Su, S. M. (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med. 16, 387-397.   DOI
57 Kimmelman, A. C. (2015) Metabolic dependencies in RAS-driven cancers. Clin. Cancer Res. 21, 1828-1834.
58 King, A., Selak, M. A. and Gottlieb, E. (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25, 4675-4682.
59 Kroemer, G. and Pouyssegur, J. (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13, 472-482.   DOI
60 Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J., Jiang, L., Ko, B., Skelton, R., Loudat, L., Wodzak, M., Klimko, C., McMillan, E., Butt, Y., Ni, M., Oliver, D., Torrealba, J., Malloy, C. R., Kernstine, K., Lenkinski, R. E. and DeBerardinis, R. J. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694.   DOI
61 Hobbs, G. A., Der, C. J. and Rossman, K. L. (2016) RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287-1292.   DOI
62 Houchens, D. P., Ovejera, A. A., Riblet, S. M. and Slagel, D. E. (1983) Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 19, 799-805.   DOI
63 Hrustanovic, G., Olivas, V., Pazarentzos, E., Tulpule, A., Asthana, S., Blakely, C. M., Okimoto, R. A., Lin, L., Neel, D. S., Sabnis, A., Flanagan, J., Chan, E., Varella-Garcia, M., Aisner, D. L., Vaishnavi, A., Ou, S. H., Collisson, E. A., Ichihara, E., Mack, P. C., Lovly, C. M., Karachaliou, N., Rosell, R., Riess, J. W., Doebele, R. C. and Bivona, T. G. (2015) RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer. Nat. Med. 21, 1038-1047.   DOI
64 Lin, J. J. and Shaw, A. T. (2016) Resisting resistance: targeted therapies in lung cancer. Trends Cancer 2, 350-364.   DOI
65 Kurtzberg, J., Asselin, B., Bernstein, M., Buchanan, G. R., Pollock, B. H. and Camitta, B. M. (2011) Polyethylene glycol-conjugated L-asparaginase versus native L-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a Children's Oncology Group Study (POG 8866). J. Pediatr. Hematol. Oncol. 33, 610-616.   DOI
66 Levine, A. J. and Puzio-Kuter, A. M. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330, 1340-1344.
67 Li, W., Saud, S. M., Young, M. R., Chen, G. and Hua, B. (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6, 7365-7378.   DOI
68 Iurlaro, R., Leon-Annicchiarico, C. L. and Munoz-Pinedo, C. (2014) Regulation of cancer metabolism by oncogenes and tumor suppressors. Methods Enzymol. 542, 59-80.
69 Huang, M., Chida, K., Kamata, N., Nose, K., Kato, M., Homma, Y., Takenawa, T. and Kuroki, T. (1988) Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts. J. Biol. Chem. 263, 17975-17980.
70 Hunt, T. K., Aslam, R. S., Beckert, S., Wagner, S., Ghani, Q. P., Hussain, M. Z., Roy, S. and Sen, C. K. (2007) Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid. Redox Signal. 9, 1115-1124.   DOI
71 Onetti, R., Baulida, J. and Bassols, A. (1997) Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett. 407, 267-270.   DOI
72 Ott, P. A., Carvajal, R. D., Pandit-Taskar, N., Jungbluth, A. A., Hoffman, E. W., Wu, B. W., Bomalaski, J. S., Venhaus, R., Pan, L., Old, L. J., Pavlick, A. C. and Wolchok, J. D. (2013) Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients with advanced melanoma. Invest. New Drugs 31, 425-434.
73 Pakala, R., Kreisel, M. and Bachrach, U. (1988) Polyamine metabolism and interconversion in NIH 3T3 and ras-transfected NIH 3T3 cells. Cancer Res. 48, 3336-3340.
74 Pao, W. and Miller, V. A. (2005) Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 23, 2556-2568.   DOI
75 Parker, S. J. and Metallo, C. M. (2015) Metabolic consequences of oncogenic IDH mutations. Pharmacol. Ther. 152, 54-62.   DOI
76 Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. and Jemal, A. (2015) Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87-108.
77 Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47.   DOI
78 Pikor, L. A., Ramnarine, V. R., Lam, S. and Lam, W. L. (2013) Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer 82, 179-189.   DOI
79 Possemato, R., Marks, K. M., Shaul, Y. D., Pacold, M. E., Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H. K., Jang, H. G., Jha, A. K., Chen, W. W., Barrett, F. G., Stransky, N., Tsun, Z. Y., Cowley, G. S., Barretina, J., Kalaany, N. Y., Hsu, P. P., Ottina, K., Chan, A. M., Yuan, B., Garraway, L. A., Root, D. E., Mino-Kenudson, M., Brachtel, E. F., Driggers, E. M. and Sabatini, D. M. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346-350.   DOI
80 Tennant, D. A., Duran, R. V. and Gottlieb, E. (2010) Targeting metabolic transformation for cancer therapy. Nat. Rev. Cancer 10, 267-277.   DOI
81 Tsun, Z. Y. and Possemato, R. (2015) Amino acid management in cancer. Semin. Cell Dev. Biol. 43, 22-32.   DOI
82 Vignot, S., Faivre, S., Aguirre, D. and Raymond, E. (2005) mTORtargeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 16, 525-537.   DOI
83 Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314.   DOI
84 Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., Bauer, M. R., Jha, A. K., O'Brien, J. P., Pierce, K. A., Gui, D. Y., Sullivan, L. B., Wasylenko, T. M., Subbaraj, L., Chin, C. R., Stephanopolous, G., Mott, B. T., Jacks, T., Clish, C. B. and Vander Heiden, M. G. (2016) Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab. 23, 517-528.   DOI
85 Dearden, S., Stevens, J., Wu, Y. L. and Blowers, D. (2013) Mutation incidence and coincidence in non small-cell lung cancer: metaanalyses by ethnicity and histology (mutMap). Ann. Oncol. 24, 2371-2376.
86 Dong, G., Mao, Q., Xia, W., Xu, Y., Wang, J., Xu, L. and Jiang, F. (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol. Lett. 11, 1980-1986.   DOI
87 Wallace, D. C. (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685-698.   DOI
88 Wang, H. Q., Altomare, D. A., Skele, K. L., Poulikakos, P. I., Kuhajda, F. P., Di Cristofano, A. and Testa, J. R. (2005) Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells. Oncogene 24, 3574-3582.   DOI
89 Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G. M., Budinger, G. R. and Chandel, N. S. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U.S.A. 107, 8788-8793.   DOI
90 Whang, Y. M., Park, S. I., Trenary, I. A., Egnatchik, R. A., Fessel, J. P., Kaufman, J. M., Carbone, D. P. and Young, J. D. (2016) LKB1 deficiency enhances sensitivity to energetic stress induced by erlotinib treatment in non-small-cell lung cancer (NSCLC) cells. Oncogene 35, 856-866.   DOI
91 Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., Wachsmann, J. W., Young, J. D., Kernstine, K. and DeBerardinis, R. J. (2017) Lactate Metabolism in Human Lung Tumors. Cell 171, 358-371.e9.   DOI
92 Edmunds, L. R., Sharma, L., Kang, A., Lu, J., Vockley, J., Basu, S., Uppala, R., Goetzman, E. S., Beck, M. E., Scott, D. and Prochownik, E. V. (2014) c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J. Biol. Chem. 289, 25382-25392.   DOI
93 Eng, C. P., Sehgal, S. N. and Vezina, C. (1984) Activity of rapamycin (AY-22,989) against transplanted tumors. J. Antibiot. 37, 1231-1237.   DOI
94 Fan, T. W., Lane, A. N., Higashi, R. M., Farag, M. A., Gao, H., Bousamra, M. and Miller, D. M. (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 8, 41.   DOI
95 Liu, W., Le, A., Hancock, C., Lane, A. N., Dang, C. V., Fan, T. W. and Phang, J. M. (2012) Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. U.S.A. 109, 8983-8988.   DOI
96 Locasale, J. W., Grassian, A. R., Melman, T., Lyssiotis, C. A., Mattaini, K. R., Bass, A. J., Heffron, G., Metallo, C. M., Muranen, T., Sharfi, H., Sasaki, A. T., Anastasiou, D., Mullarky, E., Vokes, N. I., Sasaki, M., Beroukhim, R., Stephanopoulos, G., Ligon, A. H., Meyerson, M., Richardson, A. L., Chin, L., Wagner, G., Asara, J. M., Brugge, J. S., Cantley, L. C. and Vander Heiden, M. G. (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869-874.   DOI
97 Mahoney, C. L., Choudhury, B., Davies, H., Edkins, S., Greenman, C., Haaften, G., Mironenko, T., Santarius, T., Stevens, C., Stratton, M. R. and Futreal, P. A. (2009) LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br. J. Cancer 100, 370-375.   DOI
98 Lv, J., Wang, J., Chang, S., Liu, M. and Pang, X. (2016) The greedy nature of mutant RAS: a boon for drug discovery targeting cancer metabolism? Acta Biochim. Biophys. Sin. (Shanghai) 48, 17-26.
99 Lyssiotis, C. A. and Kimmelman, A. C. (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863-875.   DOI
100 Magda, D., Lecane, P., Prescott, J., Thiemann, P., Ma, X., Dranchak, P. K., Toleno, D. M., Ramaswamy, K., Siegmund, K. D. and Hacia, J. G. (2008) mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 9, 521.   DOI
101 Mailloux, R. J. (2015) Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 4, 381-398.   DOI
102 Roberts, P. J. and Stinchcombe, T. E. (2013) KRAS mutation: should we test for it, and does it matter? J. Clin. Oncol. 31, 1112-1121.   DOI
103 Pusch, O., Soucek, T., Hengstschlager-Ottnad, E., Bernaschek, G. and Hengstschlager, M. (1997) Cellular targets for activation by c-Myc include the DNA metabolism enzyme thymidine kinase. DNA Cell Biol. 16, 737-747.
104 Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer 11, 761-774.   DOI
105 Quail, D. F. and Joyce, J. A. (2013) Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423-1437.   DOI
106 Ramirez de Molina, A., Rodriguez-Gonzalez, A., Gutierrez, R., Martinez-Pineiro, L., Sanchez, J., Bonilla, F., Rosell, R. and Lacal, J. (2002) Overexpression of choline kinase is a frequent feature in human tumor-derived cell lines and in lung, prostate, and colorectal human cancers. Biochem. Biophys. Res. Commun. 296, 580-583.   DOI
107 Renaud, S., Falcoz, P. E., Schaeffer, M., Guenot, D., Romain, B., Olland, A., Reeb, J., Santelmo, N., Chenard, M. P., Legrain, M., Voegeli, A. C., Beau-Faller, M. and Massard, G. (2015) Prognostic value of the KRAS G12V mutation in 841 surgically resected Caucasian lung adenocarcinoma cases. Br. J. Cancer 113, 1206-1215.   DOI
108 Saintigny, P. and Burger, J. A. (2012) Recent advances in non-small cell lung cancer biology and clinical management. Discov. Med. 13, 287-297.
109 Saito, T., Chiba, T., Yuki, K., Zen, Y., Oshima, M., Koide, S., Motoyama, T., Ogasawara, S., Suzuki, E., Ooka, Y., Tawada, A., Tada, M., Kanai, F., Takiguchi, Y., Iwama, A. and Yokosuka, O. (2013) Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS ONE 8, e70010.   DOI
110 Whitaker-Menezes, D., Martinez-Outschoorn, U. E., Flomenberg, N., Birbe, R. C., Witkiewicz, A. K., Howell, A., Pavlides, S., Tsirigos, A., Ertel, A., Pestell, R. G., Broda, P., Minetti, C., Lisanti, M. P. and Sotgia, F. (2011) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10, 4047-4064.   DOI
111 Wick, A. N., Drury, D. R., Nakada, H. I. and Wolfe, J. B. (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 224, 963-969.
112 Yang, T. S., Lu, S. N., Chao, Y., Sheen, I. S., Lin, C. C., Wang, T. E., Chen, S. C., Wang, J. H., Liao, L. Y., Thomson, J. A., Wang-Peng, J., Chen, P. J. and Chen, L. T. (2010) A randomised phase II study of pegylated arginine deiminase (ADI-PEG 20) in Asian advanced hepatocellular carcinoma patients. Br. J. Cancer 103, 954-960.   DOI
113 Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S. W. and Kreutz, M. (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812-3819.   DOI
114 Fu, C. H. and Sakamoto, K. M. (2007) PEG-asparaginase. Expert Opin. Pharmacother. 8, 1977-1984.   DOI
115 Galluzzi, L., Kepp, O., Vander Heiden, M. G. and Kroemer, G. (2013) Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829-846.   DOI
116 Wise, D. R. and Thompson, C. B. (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem. Sci. 35, 427-433.   DOI
117 Wu, R., Galan-Acosta, L. and Norberg, E. (2015) Glucose metabolism provide distinct prosurvival benefits to non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 460, 572-577.
118 Yau, T., Cheng, P. N., Chan, P., Chan, W., Chen, L., Yuen, J., Pang, R., Fan, S. T. and Poon, R. T. (2013) A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs 31, 99-107.
119 Garassino, M. C., Marabese, M., Rusconi, P., Rulli, E., Martelli, O., Farina, G., Scanni, A. and Broggini, M. (2011) Different types of KRas mutations could affect drug sensitivity and tumour behaviour in non-small-cell lung cancer. Ann. Oncol. 22, 235-237.   DOI
120 Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. and Dang, C. V. (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765.   DOI
121 Gatenby, R. A. and Gillies, R. J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891-899.   DOI
122 Glazer, E. S., Piccirillo, M., Albino, V., Di Giacomo, R., Palaia, R., Mastro, A. A., Beneduce, G., Castello, G., De Rosa, V., Petrillo, A., Ascierto, P. A., Curley, S. A. and Izzo, F. (2010) Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 28, 2220-2226.
123 Go, M. K., Zhang, W. C., Lim, B. and Yew, W. S. (2014) Glycine decarboxylase is an unusual amino acid decarboxylase involved in tumorigenesis. Biochemistry 53, 947-956.   DOI
124 Makinoshima, H., Takita, M., Matsumoto, S., Yagishita, A., Owada, S., Esumi, H. and Tsuchihara, K. (2014) Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J. Biol. Chem. 289, 20813-20823.   DOI
125 Mannava, S., Grachtchouk, V., Wheeler, L. J., Im, M., Zhuang, D., Slavina, E. G., Mathews, C. K., Shewach, D. S. and Nikiforov, M. A. (2008) Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 7, 2392-2400.   DOI
126 Mayers, J. R., Torrence, M. E., Danai, L. V., Papagiannakopoulos, T., Davidson, S. M., Bauer, M. R., Lau, A. N., Ji, B. W., Dixit, P. D., Hosios, A. M., Muir, A., Chin, C. R., Freinkman, E., Jacks, T., Wolpin, B. M., Vitkup, D. and Vander Heiden, M. G. (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Krasdriven cancers. Science 353, 1161-1165.   DOI
127 Mao, C., Qiu, L. X., Liao, R. Y., Du, F. B., Ding, H., Yang, W. C., Li, J. and Chen, Q. (2010) KRAS mutations and resistance to EGFRTKIs treatment in patients with non-small cell lung cancer: a metaanalysis of 22 studies. Lung Cancer 69, 272-278.   DOI
128 Martin-Bernabe, A., Cortes, R., Lehmann, S. G., Seve, M., Cascante, M. and Bourgoin-Voillard, S. (2014) Quantitative proteomic approach to understand metabolic adaptation in non-small cell lung cancer. J. Proteome Res. 13, 4695-4704.   DOI
129 Mathers, C. D. and Loncar, D. (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442.   DOI
130 Megchelenbrink, W., Katzir, R., Lu, X., Ruppin, E. and Notebaart, R. A. (2015) Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc. Natl. Acad. Sci. U.S.A. 112, 12217-12222.   DOI
131 Menendez, J. A. and Lupu, R. (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763-777.
132 Bar-Peled, L. and Sabatini, D. M. (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400-406.   DOI
133 Acquaviva, J., Smith, D. L., Sang, J., Friedland, J. C., He, S., Sequeira, M., Zhang, C., Wada, Y. and Proia, D. A. (2012) Targeting KRASmutant non-small cell lung cancer with the Hsp90 inhibitor ganetespib. Mol. Cancer Ther. 11, 2633-2643.   DOI
134 Agrawal, N. R., Bukowski, R. M., Rybicki, L. A., Kurtzberg, J., Cohen, L. J. and Hussein, M. A. (2003) A phase I-II trial of polyethylene glycol-conjugated L-asparaginase in patients with multiple myeloma. Cancer 98, 94-99.   DOI
135 Al-Saffar, N. M., Troy, H., Ramirez de Molina, A., Jackson, L. E., Madhu, B., Griffiths, J. R., Leach, M. O., Workman, P., Lacal, J. C., Judson, I. R. and Chung, Y. L. (2006) Noninvasive magnetic resonance spectroscopic pharmacodynamic markers of the choline kinase inhibitor MN58b in human carcinoma models. Cancer Res. 66, 427-434.   DOI
136 Shackelford, D. B., Abt, E., Gerken, L., Vasquez, D. S., Seki, A., Leblanc, M., Wei, L., Fishbein, M. C., Czernin, J., Mischel, P. S. and Shaw, R. J. (2013) LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143-158.   DOI
137 Sanchez-Cespedes, M., Parrella, P., Esteller, M., Nomoto, S., Trink, B., Engles, J. M., Westra, W. H., Herman, J. G. and Sidransky, D. (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659-3662.
138 Scott, D. A., Richardson, A. D., Filipp, F. V., Knutzen, C. A., Chiang, G. G., Ronai, Z. A., Osterman, A. L. and Smith, J. W. (2011) Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem. 286, 42626-42634.   DOI
139 Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M., Wang, Y., Yan, J., Yuneva, M. O., Deshpande, R., Lane, A. N. and Fan, T. W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687-698.   DOI
140 Shackelford, D. B. and Shaw, R. J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer 9, 563-575.   DOI
141 Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G., Jungmann, R. A., Dalla-Favera, R. and Dang, C. V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U.S.A. 94, 6658-6663.   DOI
142 Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E., Locasale, J. W., Son, J., Zhang, H., Coloff, J. L., Yan, H., Wang, W., Chen, S., Viale, A., Zheng, H., Paik, J. H., Lim, C., Guimaraes, A. R., Martin, E. S., Chang, J., Hezel, A. F., Perry, S. R., Hu, J., Gan, B., Xiao, Y., Asara, J. M., Weissleder, R., Wang, Y. A., Chin, L., Cantley, L. C. and DePinho, R. A. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670.   DOI