• Title/Summary/Keyword: Genetic evaluation

Search Result 886, Processing Time 0.025 seconds

Evaluation of Native Soybean Collection for Resistance to Purple Blotch (수집재래종대두의 자주빛무늬병(Cercospora kikuchii)에 대한 저항성검정)

  • Oh Jeung Haing;Kwon Shin Han
    • Korean journal of applied entomology
    • /
    • v.20 no.3 s.48
    • /
    • pp.131-134
    • /
    • 1981
  • Native soybean collections were evaluated to search a resistant gene source to purple blotch caused by Cercospora kikuchii. Among 467 native lines, about $28.9\%$ of the lines was less than $0.1\%$ and $13.4\%$ was over $2\%$ in natural infection of purple blotch. Natural infection seemed to be significantly associated with weather conditions at the early podding stage. A significant correlation between natural infection and purple discoloration by seed inoculation was observed and this method seemed to be effective as a preliminary screening technique for resistance to purple blotch. Most of the late maturing native soybeans showed susceptible reaction by the seed inoculation contrary to low infection under natural conditions, indicating that the low natural infection might be due to disease escaping by the late maturing instead of their genetic resistance.

  • PDF

A case of isodicentric chromosome 15 presented with epilepsy and developmental delay

  • Kim, Jon Soo;Park, Jinyu;Min, Byung-Joo;Oh, Sun Kyung;Choi, Jin Sun;Woo, Mi Jung;Chae, Jong-Hee;Kim, Ki Joong;Hwang, Yong Seung;Lim, Byung Chan
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.12
    • /
    • pp.487-490
    • /
    • 2012
  • We report a case of isodicentric chromosome 15 (idic(15) chromosome), the presence of which resulted in uncontrolled seizures, including epileptic spasms, tonic seizures, and global developmental delay. A 10-month-old female infant was referred to our pediatric neurology clinic because of uncontrolled seizures and global developmental delay. She had generalized tonic-clonic seizures since 7 months of age. At referral, she could not control her head and presented with generalized hypotonia. Her brain magnetic resonance imaging scans and metabolic evaluation results were normal. Routine karyotyping indicated the presence of a supernumerary marker chromosome of unknown origin (47, XX +mar). An array-comparative genomic hybridization (CGH) analysis revealed amplification from 15q11.1 to 15q13.1. Subsequent fluorescence in situ hybridization analysis confirmed a idic(15) chromosome. Array-CGH analysis has the advantage in determining the unknown origin of a supernumerary marker chromosome, and could be a useful method for the genetic diagnosis of epilepsy syndromes associated with various chromosomal aberrations.

A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology

  • Zaky, Abdelrahman Saleh;Greetham, Darren;Louis, Edward J.;Tucker, Greg A.;Du, Chenyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1891-1907
    • /
    • 2016
  • Yeasts that are present in marine environments have evolved to survive hostile environments that are characterized by high exogenous salt content, high concentrations of inhibitory compounds, and low soluble carbon and nitrogen levels. Therefore, yeasts isolated from marine environments could have interesting characteristics for industrial applications. However, the application of marine yeast in research or industry is currently very limited owing to the lack of a suitable isolation method. Current methods for isolation suffer from fungal interference and/or low number of yeast isolates. In this paper, an efficient and non-laborious isolation method has been developed and successfully isolated large numbers of yeasts without bacterial or fungal growth. The new method includes a three-cycle enrichment step followed by an isolation step and a confirmation step. Using this method, 116 marine yeast strains were isolated from 14 marine samples collected in the UK, Egypt, and the USA. These strains were further evaluated for the utilization of fermentable sugars (glucose, xylose, mannitol, and galactose) using a phenotypic microarray assay. Seventeen strains with higher sugar utilization capacity than the reference terrestrial yeast Saccharomyces cerevisiae NCYC 2592 were selected for identification by sequencing of the ITS and D1/D2 domains. These strains belonged to six species: S. cerevisiae, Candida tropicalis, Candida viswanathii, Wickerhamomyces anomalus, Candida glabrata, and Pichia kudriavzevii. The ability of these strains for improved sugar utilization using seawater-based media was confirmed and, therefore, they could potentially be utilized in fermentations using marine biomass in seawater media, particularly for the production of bioethanol and other biochemical products.

Evaluation of MCS Knockout Animal for Epilepsy Model (뇌전증 융합연구를 위한 MCS 녹아웃동물의 활용방안)

  • Hwang, Kyu-Seok;Kim, Oc-Hee;Kim, Cheol-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2016
  • Epilepsy is a neurological disease characterized by recurrent seizures. Though the exact causes for epilepsy are unknown, genetic mutations, especially altered gene functions, have been implicated as key causative components of epilepsy. We recently identified a causing gene for the Miles-Carpenter syndrome (MCS). MCS patients have intellectual disability and epilepsy. MCS knockout (KO) zebrafish also show a seizure-like phenotype with hyperactivity of pectoral fin and jaw movement, resulting from loss of GABAergic interneurons. To evaluate MCS KO zebrafish as an epilepsy model, we tested the effects of retigabine, an anticonvulsant drug, on the movement of MCS KO zebrafish.

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik;Panda, Subrata K.;Kumar, Vikash;Dewangan, Hukum Chand
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.391-401
    • /
    • 2020
  • The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.

Geographic Variation and Genetic Diversity between Polluted and Unpolluted Sites of Korean Littorina brevicula(Gastropoda, Littorinidae) Based on the Mitochondrial Cytochrome b Gene Sequence (미토콘드리아 Cytochrome b 유전자의 염기서열 분석을 이용한 한국산 총알고둥(복족강, 총앙고둥과)의 지리적 변이 및 오염.비오염지역간의 유전적 다양성)

  • Suh, Jae-Hwa;Kim, Sook-Jung;Song, Jun-Im
    • Animal Systematics, Evolution and Diversity
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2002
  • MtDNA cyt b gene was used to investigate the geographic variation of 11 populations (106 individuals) of the planktonic developing, periwinkle Littorina brevicula, throughout Eastern, Western, and Southern coastal regions in Korea. The sequence of 500 base pairs and 13 different haplotypes were determined. Haplotype LbA was predominated through the populations studied with frequence of 0.877. Haplotypes were shown different frequencies in each coastal region (0.82, 0.90, and 1.00, respectively). enetic analysis of the 61 individuals of L. brevicula from the polluted and unpolluted sites yielded 8 distinct haplotypes. Haplotype LbA also was most common, and it was shared by 0.872 of frequency among specimens.

Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.)

  • Kim, Hyo Chul;Song, Kitae;Moon, Jun-Cheol;Kim, Jae Yoon;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.432-440
    • /
    • 2019
  • Global climate change exerts adverse effects on maize production. Among abiotic stresses, drought stress during the tasseling stage (VT) can increase anthesis-silking intervals (ASI) and decrease yield. We performed an evaluation of ASI and yield using a drought-sensitive line (Ki3) and a drought-tolerant line (Ki11) to analyze the correlation with ASI and yield. Moreover, the de novo data of Ki11 were analyzed to find putative novel transcripts related todrought stress in tropical maize. A total of 182 transcripts, with a log2 ratio >1.5, were found by comparing drought conditions to a control. The top 40 transcripts of high expression levels in the de novo analysis were selected and analyzed with PCR. Of the 40 transcripts, six novel transcripts were detected by quantitative real-time PCR (qRT-PCR) using seedling and VT stage samples. Five transcripts (transcripts_1, 12, 34, 35, and 40) were up-regulated in the Ki11 shoot at seedling stage, and transcripts_1, 12, and 40 were up-regulated at the re-watering stage after 12 h of drought stress. The transcripts_32 and 34 were up-regulated at the VT stage. Hence, transcript_34 possibly plays a significant role in drought tolerance during the seedling and VT stages. The transcript_32 was identified as chloramphenicol acetyltransferase (CAT) by Pfam domain analysis. The function of the other transcripts remained unknown. Further characterization of these novel transcripts in genetic regulation will be of great value for the improvement of maize production.

Evaluation of Glucose Dehydrogenase and Pyrroloquinoline Quinine (pqq) Mutagenesis that Renders Functional Inadequacies in Host Plants

  • Naveed, Muhammad;Sohail, Younas;Khalid, Nauman;Ahmed, Iftikhar;Mumtaz, Abdul Samad
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1349-1360
    • /
    • 2015
  • The rhizospheric zone abutting plant roots usually clutches a wealth of microbes. In the recent past, enormous genetic resources have been excavated with potential applications in host plant interaction and ancillary aspects. Two Pseudomonas strains were isolated and identified through 16S rRNA and rpoD sequence analyses as P. fluorescens QAU67 and P. putida QAU90. Initial biochemical characterization and their root-colonizing traits indicated their potential role in plant growth promotion. Such aerobic systems, involved in gluconic acid production and phosphate solubilization, essentially require the pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase (GDH) in the genome. The PCR screening and amplification of GDH and PQQ and subsequent induction of mutagenesis characterized their possible role as antioxidants as well as in growth promotion, as probed in vitro in lettuce and in vivo in rice, bean, and tomato plants. The results showed significant differences (p ≤ 0.05) in parameters of plant height, fresh weight, and dry weight, etc., deciphering a clear and in fact complementary role of GDH and PQQ in plant growth promotion. Our study not only provides direct evidence of the in vivo role of GDH and PQQ in host plants but also reveals their functional inadequacy in the event of mutation at either of these loci.

Evaluation of Yeast Diversity During Wine Fermentations with Direct Inoculation and pied de cuve Method at an Industrial Scale

  • Li, Erhu;Liu, Chuanhe;Liu, Yanlin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.960-966
    • /
    • 2012
  • The diversity and composition of yeast populations may greatly impact wine quality. This study investigated the yeast microbiota in two different types of wine fermentations: direct inoculation of a commercial starter versus pied de cuve method at an industrial scale. The pied de cuve fermentation entailed growth of the commercial inoculum used in the direct inoculation fermentation for further inoculation of additional fermentations. Yeast isolates were collected from different stages of wine fermentation and identified to the species level using Wallersterin Laboratory nutrient (WLN) agar followed by analysis of the 26S rDNA D1/D2 domain. Genetic characteristics of the Saccharomyces cerevisiae strains were assessed by a rapid PCR-based method, relying on the amplification of interdelta sequences. A total of 412 yeast colonies were obtained from all fermentations and eight different WL morphotypes were observed. Non-Saccharomyces yeast mainly appeared in the grape must and at the early stages of wine fermentation. S. cerevisiae was the dominant yeast species using both fermentation techniques. Seven distinguishing interdelta sequence patterns were found among S. cerevisiae strains, and the inoculated commercial starter, AWRI 796, dominated all stages in both direct inoculation and pied de cuve fermentations. This study revealed that S. cerevisiae was the dominant species and an inoculated starter could dominate fermentations with the pied de cuve method under controlled conditions.

Bioassessment and Comparison of Toxicity of Arsenics based on the Results of Various Bioassays (다양한 생물 검정법에 근거한 비소의 위해성 평가 비교)

  • Kong, In-Chul;Kwon, Hyo-Jung;Ko, Kyung-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.795-801
    • /
    • 2010
  • The acute toxicity of arsenic compounds was assessed and compared using following four bioassays; bioluminescence activity of the recombinant strain RB1436, germination of four different seeds, ${\alpha}$-glucosidase activity produced by Bacillus lichemiformis, acute genetic revertant mutation using mutant strain Salmonella typhimurium. Different sensitivities were observed among tested bioassays, but generally the toxicity by arsenite was greater than that of arsenate. Among tested four seeds, sensitivities of Lactucus and Raphanus were greater than others, and these two seed types were appeared as proper type for bioassay. High revertant mutation ratio (5.1) was observed with 1 mg/L arsenite, indicating high mutagenicity. The sensitivity of ${\alpha}$-glucosidase activity on arsenic compounds was much lower than other methods. The evaluation of interactive toxic effects using various bioassays may comprise a useful tool for the bioassessment of environmental pollutants.