DOI QR코드

DOI QR Code

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator

  • Mishra, Kaushik (School of Mechanical Engineering, VIT Vellore) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, NIT Rourkela) ;
  • Kumar, Vikash (Department of Mechanical Engineering, NIT Rourkela) ;
  • Dewangan, Hukum Chand (Department of Mechanical Engineering, NIT Rourkela)
  • Received : 2020.03.10
  • Accepted : 2020.05.29
  • Published : 2020.09.25

Abstract

The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5
  2. Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear Vibration Analysis of Piezoelectric Plates Reinforced with Carbon Nanotubes Using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  3. Aridogan, U., Basdogan, I. and Erturk, A. (2014), "Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate", Smart Mater. Struct., 23(4), 045039. https://doi.org/10.1088/0964-1726/23/4/045039
  4. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
  5. Arul, K.T., Ramanjaneyulu, M. and Ramachandra Rao, M.S. (2019), "Energy Harvesting of PZT/PMMA Composite Flexible Films", Curr. Appl. Phys., 19(4), 375-380. https://doi.org/10.1016/j.cap.2019.01.003
  6. Balamurugan, V. and Narayanan, S. (2009), "Multilayer Higher Order Piezo-Laminated Smart Composite Shell Finite Element and Its Application to Active Vibration Control", J. Intell. Mater. Syst. Struct., 20(4), 425-441. https://doi.org/10.1177/1045389X08095269
  7. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
  8. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A. ., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/jnanor.57.175
  9. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
  10. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
  11. Biswal, A.R., Roy, T. and Behera, R.K. (2017), "Optimal Vibration Energy Harvesting from Non-Prismatic Axially Functionally Graded Piezolaminated Cantilever Beam Using Genetic Algorithm", J. Intell. Mater. Syst. Struct., 28(14), 1957-1976. https://doi.org/10.1177/1045389X16682842
  12. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
  13. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
  14. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
  15. Calio, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G. and Oddo, C.M. (2014), "Piezoelectric Energy Harvesting Solutions", Sensors, 14(3), 4755-4790. https://doi.org/10.3390/s140304755
  16. Civalek, O. and Akgoz, B. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752
  17. Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J. and Rogers, J.A. (2014), "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm", Proceedings of the National Academy of Sciences, 111(5), 1927-1932. https://doi.org/10.1073/pnas.1317233111
  18. Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45(10), 686-694. https://doi.org/10.1016/j.finel.2009.05.004
  19. Dechant, E., Fedulov, F., Fetisov, L.Y. and Shamonin, M. (2017), "Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting", Appl. Sci., 7(12). https://doi.org/10.3390/app7121324
  20. Dutoit, N.E., Brian L.W. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71(1), 121-160. https://doi.org/10.1080/10584580590964574
  21. Erturk, A. and Inman, D.J. (2008), "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters", J. Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402
  22. Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2). https://doi.org/10.1088/0964-1726/18/2/025009
  23. Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensors Actuators A Phys., 110(1-3), 344-349. https://doi.org/10.1016/j.sna.2003.09.045
  24. Himanshu, P. (2013), "Piezoelectric Transduction Mechanism for Vibration Based Energy Harvesting", NITR M.Tech Thesis; NIT Rourkela, pp. 1-72.
  25. Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", J. Microelectromech. Syst, 8(4), 497-505. https://doi.org/10.1109/84.809065
  26. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  27. Josefsson, A. (2014), An Early Product Development Project at a Start-up Company.
  28. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
  29. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Compos., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
  30. Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
  31. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036
  32. Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
  33. Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0
  34. Khalatkar, A., Gupta, V.K. and Agrawal, A. (2014), "Analytical, FEA, and experimental comparisons of piezoelectric energy harvesting using engine vibrations", Smart Mater. Res., 1-8. https://doi.org/10.1155/2014/741280
  35. Kim, H.W., Priya, S., Uchino, K. and Newnham, R.E. (2005), "Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations", J. Electroceram., 15(1), 27-34. https://doi.org/10.1007/s10832-005-0897-z
  36. Kim, J.E., Kim, H., Yoon, H., Kim, Y.Y. and Youn, B.D. (2015), "An Energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters", Int. J. of Precis. Eng. Manuf.-Green Tech., 2, 51-57. https://doi.org/10.1007/s40684-015-0007-x
  37. Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T. and Li, S. (2014), Waste Energy Harvesting, (Vol. 24), Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, Germany.
  38. Kundu, S. and Nemade, H.B. (2016), "Modeling and simulation of a piezoelectric vibration energy harvester", Procedia Eng., 144, 568-575. https://doi.org/10.1016/j.proeng.2016.05.043
  39. Li, X., Bhushan, B., Takashima, K., Baek, C.-W. and Kim, Y.-K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9
  40. Li, H., Tian, C. and Deng, Z.D. (2014), "Energy harvesting from low frequency applications using piezoelectric materials", Appl. Phys. Rev., 1(4), 041301. https://doi.org/10.1063/1.4900845
  41. Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S. and Green, T.C. (2004), "MEMS Electrostatic Micropower Generator for Low Frequency Operation", Sensors Actuat. A Phys., 115(2-3), 523-529. https://doi.org/10.1016/j.sna.2004.04.026
  42. Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S. and Green, T.C. (2008), "Energy harvesting from human and machine motion for wireless electronic devices", Proc. IEEE, 96(9), 1457-1486. https://doi.org/10.1109/JPROC.2008.927494
  43. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577
  44. Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical Nonlinear Free Vibration Responses of FG-CNT Reinforced Composite Annular Sector Plates Integrated with Piezoelectric Layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048
  45. Moser, Y. and Gijs, M.A.M. (2007), "Miniaturized Flexible Temperature Sensor", J. Microelectromech. Syst., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437
  46. Motezaker, M. and Eyvazian, E. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289
  47. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J Computat. Appl. Mathe., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625
  48. Muralt, P., Marzencki, M., Belgacem, B., Calame, F. and Basrour, S. (2009), "Vibration energy harvesting with PZT micro device", Procedia Chem., 1(1), 1191-1194. https://doi.org/10.1016/j.proche.2009.07.297
  49. Najini, H. and Muthukumaraswamy, S.A. (2017), "Piezoelectric energy generation from vehicle traffic with technoeconomic analysis", J. Renew. Energy, 1-16. https://doi.org/10.1155/2017/9643858
  50. Othman, A. (2017), "Modeling of piezoelectric energy harvesting system embedded in soldier's boot using Matlab/Simulink", Proceedings of 2017 International Conference on Military Technologies (ICMT), pp. 787-792. https://doi.org/10.1109/MILTECHS.2017.7988862
  51. Panda, P.K., Sahoo, B., Ramakrishna, J., Manoj, B. and Prasada Rao, D.S.D. (2018), "Recent Studies on Vibrational Energy Harvesting of PZT Materials", Mater. Today Proc., 5(10), 21512-21516. https://doi.org/10.1016/j.matpr.2018.06.562
  52. Park, J., Lee, S. and Kwak, B.M. (2012), "Design optimization of piezoelectric energy harvester subject to tip excitation", J. Mech. Sci. Technol., 26(1), 137-143. https://doi.org/10.1007/s12206-011-0910-1
  53. Rafiee, M., Mohammadi, M., Aragh, B.S. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, Part II: Numerical results", Compos. Struct., 103, 188-196. https://doi.org/10.1016/j.compstruct.2012.12.050
  54. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225
  55. Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018
  56. Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  57. Sahla, Meriem., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
  58. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
  59. Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C. and Kim, D.-J. (2009), "Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting", Sensors Actuators A Phys., 154(1), 103-108. https://doi.org/10.1016/j.sna.2009.06.007
  60. Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems", Smart Mater. Struct., 15(6), 1499. https://doi.org/10.1088/0964-1726/15/6/001
  61. Shutao, P., Zheng X., Jing, S., Yong, Z., Liang, Z., Jihe, Z., Deng S., Mingfang, C., Wei, X. and Ke, P. (2012), "Modeling of a micro-cantilevered piezo-actuator considering the buffer layer and electrodes", J. Micromech. Microeng., 22(6). https://doi.org/10.1088/0960-1317/22/6/065005
  62. Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23(13), 2078-2093. https://doi.org/10.1177/1077546315609988
  63. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear Transient Analysis of Smart Laminated Composite Plate Integrated with PVDF Sensor and AFC Actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020
  64. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
  65. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech, Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
  66. Williams, C.B. and Yates, R.B. (1996), "Analysis of a micro-electric generator for microsystems", Sensors Actuators A Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X
  67. Yang, B. (2010), "Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms", J. Micro/Nanolithogr. MEMS, MOEMS, 9(2), 023002. https://doi.org/10.1117/1.3373516
  68. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  69. Zeng, S., Zhang, C., Wang, K., Wang, B. and Sun, L. (2018), "Analysis of delamination of unimorph cantilever piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 29(9), 1875-1883. https://doi.org/10.1177/1045389X17754273
  70. Zhu, M., Worthington, E. and Njuguna, J. (2009), "Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56(7), 1309-1317. https://doi.org/10.1109/TUFFC.2009.1187

Cited by

  1. Complex bursting dynamics of a Mathieu-van der Pol-Duffing energy harvester vol.96, pp.1, 2021, https://doi.org/10.1088/1402-4896/abcad1