Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.3.391

Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator  

Mishra, Kaushik (School of Mechanical Engineering, VIT Vellore)
Panda, Subrata K. (Department of Mechanical Engineering, NIT Rourkela)
Kumar, Vikash (Department of Mechanical Engineering, NIT Rourkela)
Dewangan, Hukum Chand (Department of Mechanical Engineering, NIT Rourkela)
Publication Information
Smart Structures and Systems / v.26, no.3, 2020 , pp. 391-401 More about this Journal
Abstract
The present article reports the feasibility of the electrical energy generation from ambient low-frequency vibration using a piezoelectric material mounted on a bimorph cantilever beam actuator. A corresponding higher-order analytical model is developed using MATLAB in conjunction with finite element method under low-frequency with both damped and undamped conditions. An alternate model is also developed to check the material and dimensional viability of both piezoelectric materials (mainly focussed to PVDF and PZT) and the base material. Also, Genetic Algorithm is implemented to find the optimum dimensions which can produce the higher values of voltage at low-frequency frequencies (≤ 100 Hz). The delamination constraints are employed to avoid inter-laminar stresses and to increase the fracture toughness. The delamination has been done using a Teflon sheet sandwiched in between base plates and the piezo material is stuck to the base plate using adhesives. The analytical model is tested for both homogenous and isotropic material characteristics of the base material and extended to investigate the effect of the different geometrical parameters (base plate dimensions, piezo layer dimensions and placement, delamination thickness and placement, excitation frequency) on the model responses of the bimorph cantilever beam. It has been observed that when the base material characteristics are homogenous, the efficiency of the model remains higher when compared to the condition when it is of isotropic material. The necessary convergence behaviour of the current numerical model has been established and checked for the accuracy by comparing with available published results. Finally, using the results obtained from the model, a prototype is fabricated for the experimental validation via a suitable circuit considering Glass fibre and Aluminium as the bimorph material.
Keywords
piezoelectric materials; PZT; PVDF; bimorph actuator; glass fibre;
Citations & Related Records
Times Cited By KSCI : 28  (Citation Analysis)
연도 인용수 순위
1 Dechant, E., Fedulov, F., Fetisov, L.Y. and Shamonin, M. (2017), "Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting", Appl. Sci., 7(12). https://doi.org/10.3390/app7121324
2 Dutoit, N.E., Brian L.W. and Kim, S.G. (2005), "Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters", Integr. Ferroelectr., 71(1), 121-160. https://doi.org/10.1080/10584580590964574   DOI
3 Erturk, A. and Inman, D.J. (2008), "A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters", J. Vib. Acoust., 130(4), 041002. https://doi.org/10.1115/1.2890402   DOI
4 Erturk, A. and Inman, D.J. (2009), "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations", Smart Mater. Struct., 18(2). https://doi.org/10.1088/0964-1726/18/2/025009
5 Glynne-Jones, P., Tudor, M.J., Beeby, S.P. and White, N.M. (2004), "An electromagnetic, vibration-powered generator for intelligent sensor systems", Sensors Actuators A Phys., 110(1-3), 344-349. https://doi.org/10.1016/j.sna.2003.09.045   DOI
6 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5   DOI
7 Arani, A.G., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear Vibration Analysis of Piezoelectric Plates Reinforced with Carbon Nanotubes Using DQM", Smart Struct. Syst., Int. J., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787   DOI
8 Aridogan, U., Basdogan, I. and Erturk, A. (2014), "Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate", Smart Mater. Struct., 23(4), 045039. https://doi.org/10.1088/0964-1726/23/4/045039   DOI
9 Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", J. Microelectromech. Syst, 8(4), 497-505. https://doi.org/10.1109/84.809065   DOI
10 Himanshu, P. (2013), "Piezoelectric Transduction Mechanism for Vibration Based Energy Harvesting", NITR M.Tech Thesis; NIT Rourkela, pp. 1-72.
11 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431   DOI
12 Josefsson, A. (2014), An Early Product Development Project at a Start-up Company.
13 Singh, V.K. and Panda, S.K. (2017), "Geometrical nonlinear free vibration analysis of laminated composite doubly curved shell panels embedded with piezoelectric layers", J. Vib. Control, 23(13), 2078-2093. https://doi.org/10.1177/1077546315609988   DOI
14 Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
15 Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical Nonlinear Free Vibration Responses of FG-CNT Reinforced Composite Annular Sector Plates Integrated with Piezoelectric Layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048   DOI
16 Moser, Y. and Gijs, M.A.M. (2007), "Miniaturized Flexible Temperature Sensor", J. Microelectromech. Syst., 16(6), 1349-1354. https://doi.org/10.1109/JMEMS.2007.908437   DOI
17 Motezaker, M. and Eyvazian, E. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., Int. J., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289
18 Shen, D., Park, J.-H., Noh, J.H., Choe, S.-Y., Kim, S.-H., Wikle, H.C. and Kim, D.-J. (2009), "Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting", Sensors Actuators A Phys., 154(1), 103-108. https://doi.org/10.1016/j.sna.2009.06.007   DOI
19 Shu, Y.C. and Lien, I.C. (2006), "Analysis of power output for piezoelectric energy harvesting systems", Smart Mater. Struct., 15(6), 1499. https://doi.org/10.1088/0964-1726/15/6/001   DOI
20 Shutao, P., Zheng X., Jing, S., Yong, Z., Liang, Z., Jihe, Z., Deng S., Mingfang, C., Wei, X. and Ke, P. (2012), "Modeling of a micro-cantilevered piezo-actuator considering the buffer layer and electrodes", J. Micromech. Microeng., 22(6). https://doi.org/10.1088/0960-1317/22/6/065005
21 Othman, A. (2017), "Modeling of piezoelectric energy harvesting system embedded in soldier's boot using Matlab/Simulink", Proceedings of 2017 International Conference on Military Technologies (ICMT), pp. 787-792. https://doi.org/10.1109/MILTECHS.2017.7988862
22 Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J Computat. Appl. Mathe., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625   DOI
23 Muralt, P., Marzencki, M., Belgacem, B., Calame, F. and Basrour, S. (2009), "Vibration energy harvesting with PZT micro device", Procedia Chem., 1(1), 1191-1194. https://doi.org/10.1016/j.proche.2009.07.297   DOI
24 Najini, H. and Muthukumaraswamy, S.A. (2017), "Piezoelectric energy generation from vehicle traffic with technoeconomic analysis", J. Renew. Energy, 1-16. https://doi.org/10.1155/2017/9643858
25 Panda, P.K., Sahoo, B., Ramakrishna, J., Manoj, B. and Prasada Rao, D.S.D. (2018), "Recent Studies on Vibrational Energy Harvesting of PZT Materials", Mater. Today Proc., 5(10), 21512-21516. https://doi.org/10.1016/j.matpr.2018.06.562   DOI
26 Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A. ., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/jnanor.57.175   DOI
27 Arul, K.T., Ramanjaneyulu, M. and Ramachandra Rao, M.S. (2019), "Energy Harvesting of PZT/PMMA Composite Flexible Films", Curr. Appl. Phys., 19(4), 375-380. https://doi.org/10.1016/j.cap.2019.01.003   DOI
28 Balamurugan, V. and Narayanan, S. (2009), "Multilayer Higher Order Piezo-Laminated Smart Composite Shell Finite Element and Its Application to Active Vibration Control", J. Intell. Mater. Syst. Struct., 20(4), 425-441. https://doi.org/10.1177/1045389X08095269   DOI
29 Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
30 Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643
31 Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
32 Williams, C.B. and Yates, R.B. (1996), "Analysis of a micro-electric generator for microsystems", Sensors Actuators A Phys., 52(1-3), 8-11. https://doi.org/10.1016/0924-4247(96)80118-X   DOI
33 Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear Transient Analysis of Smart Laminated Composite Plate Integrated with PVDF Sensor and AFC Actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020   DOI
34 Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245
35 Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech, Int. J., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637
36 Li, H., Tian, C. and Deng, Z.D. (2014), "Energy harvesting from low frequency applications using piezoelectric materials", Appl. Phys. Rev., 1(4), 041301. https://doi.org/10.1063/1.4900845   DOI
37 Biswal, A.R., Roy, T. and Behera, R.K. (2017), "Optimal Vibration Energy Harvesting from Non-Prismatic Axially Functionally Graded Piezolaminated Cantilever Beam Using Genetic Algorithm", J. Intell. Mater. Syst. Struct., 28(14), 1957-1976. https://doi.org/10.1177/1045389X16682842   DOI
38 Kong, L.B., Li, T., Hng, H.H., Boey, F., Zhang, T. and Li, S. (2014), Waste Energy Harvesting, (Vol. 24), Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, Germany.
39 Kundu, S. and Nemade, H.B. (2016), "Modeling and simulation of a piezoelectric vibration energy harvester", Procedia Eng., 144, 568-575. https://doi.org/10.1016/j.proeng.2016.05.043   DOI
40 Li, X., Bhushan, B., Takashima, K., Baek, C.-W. and Kim, Y.-K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97(1-4), 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9   DOI
41 Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E.M., Holmes, A.S. and Green, T.C. (2004), "MEMS Electrostatic Micropower Generator for Low Frequency Operation", Sensors Actuat. A Phys., 115(2-3), 523-529. https://doi.org/10.1016/j.sna.2004.04.026   DOI
42 Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S. and Green, T.C. (2008), "Energy harvesting from human and machine motion for wireless electronic devices", Proc. IEEE, 96(9), 1457-1486. https://doi.org/10.1109/JPROC.2008.927494   DOI
43 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A. and Mahmoud, S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577
44 Calio, R., Rongala, U.B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G. and Oddo, C.M. (2014), "Piezoelectric Energy Harvesting Solutions", Sensors, 14(3), 4755-4790. https://doi.org/10.3390/s140304755   DOI
45 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., Int. J., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503
46 Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
47 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191
48 Civalek, O. and Akgoz, B. (2014), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib. Control, 20(4), 606-616. https://doi.org/10.1177/1077546312463752   DOI
49 Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J. and Rogers, J.A. (2014), "Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm", Proceedings of the National Academy of Sciences, 111(5), 1927-1932. https://doi.org/10.1073/pnas.1317233111   DOI
50 Kim, J.E., Kim, H., Yoon, H., Kim, Y.Y. and Youn, B.D. (2015), "An Energy conversion model for cantilevered piezoelectric vibration energy harvesters using only measurable parameters", Int. J. of Precis. Eng. Manuf.-Green Tech., 2, 51-57. https://doi.org/10.1007/s40684-015-0007-x   DOI
51 Roundy, S., Wright, P.K. and Rabaey, J. (2003), "A study of low level vibrations as a power source for wireless sensor nodes", Comput. Commun., 26(11), 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7   DOI
52 Dash, P. and Singh, B.N. (2009), "Nonlinear free vibration of piezoelectric laminated composite plate", Finite Elem. Anal. Des., 45(10), 686-694. https://doi.org/10.1016/j.finel.2009.05.004   DOI
53 Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
54 Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Compos., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9   DOI
55 Park, J., Lee, S. and Kwak, B.M. (2012), "Design optimization of piezoelectric energy harvester subject to tip excitation", J. Mech. Sci. Technol., 26(1), 137-143. https://doi.org/10.1007/s12206-011-0910-1   DOI
56 Rafiee, M., Mohammadi, M., Aragh, B.S. and Yaghoobi, H. (2013), "Nonlinear free and forced thermo-electro-aero-elastic vibration and dynamic response of piezoelectric functionally graded laminated composite shells, Part II: Numerical results", Compos. Struct., 103, 188-196. https://doi.org/10.1016/j.compstruct.2012.12.050   DOI
57 Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225
58 Roundy, S. and Wright, P.K. (2004), "A piezoelectric vibration based generator for wireless electronics", Smart Mater. Struct., 13(5), 1131-1142. https://doi.org/10.1088/0964-1726/13/5/018   DOI
59 Sahla, Meriem., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., Int. J., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663
60 Karami, B., Janghorban, M. and Tounsi, A. (2019b), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., Int. J., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055
61 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019c), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036   DOI
62 Karami, B., Janghorban, M. and Tounsi, A. (2019d), "On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model", Struct. Eng. Mech., Int. J., 69(5), 487-497. https://doi.org/10.12989/sem.2019.69.5.487
63 Karami, B., Janghorban, M. and Tounsi, A. (2019e), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J Braz. Soc. Mech. Sci. Eng., 41, 495. https://doi.org/10.1007/s40430-019-1996-0   DOI
64 Khalatkar, A., Gupta, V.K. and Agrawal, A. (2014), "Analytical, FEA, and experimental comparisons of piezoelectric energy harvesting using engine vibrations", Smart Mater. Res., 1-8. https://doi.org/10.1155/2014/741280
65 Kim, H.W., Priya, S., Uchino, K. and Newnham, R.E. (2005), "Piezoelectric Energy Harvesting under High Pre-Stressed Cyclic Vibrations", J. Electroceram., 15(1), 27-34. https://doi.org/10.1007/s10832-005-0897-z   DOI
66 Zhu, M., Worthington, E. and Njuguna, J. (2009), "Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 56(7), 1309-1317. https://doi.org/10.1109/TUFFC.2009.1187   DOI
67 Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089
68 Yang, B. (2010), "Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms", J. Micro/Nanolithogr. MEMS, MOEMS, 9(2), 023002. https://doi.org/10.1117/1.3373516   DOI
69 Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051   DOI
70 Zeng, S., Zhang, C., Wang, K., Wang, B. and Sun, L. (2018), "Analysis of delamination of unimorph cantilever piezoelectric energy harvesters", J. Intell. Mater. Syst. Struct., 29(9), 1875-1883. https://doi.org/10.1177/1045389X17754273   DOI