• Title/Summary/Keyword: Genetic algorithms (GAs)

Search Result 242, Processing Time 0.019 seconds

Distributed Hybrid Genetic Algorithms for Structural Optimization (분산 복합유전알고리즘을 이용한 구조최적화)

  • 우병헌;박효선
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.407-417
    • /
    • 2003
  • Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

Design Optimization of Liquid Rocket Engine Using Genetic Algorithms (유전알고리즘을 이용한 액체로켓엔진 설계 최적화)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.25-33
    • /
    • 2012
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Pressure of the main combustion chamber, nozzle expansion ratio and O/F ratio have been selected as design variables. The target engine has the open gas generator cycle using the LO2/RP-1 propellant. The gas properties of the combustion chamber have been obtained from CEA2 and the mass has been estimated using reference data. The objective function has been set as multi-objective function with the specific impulse and thrust to weight ratio using the weight method. The result shows about 4% improvement of the specific impulse and 23% increase of the thrust to weight ratio. The Pareto frontier line has been also obtained for various thrust requirements.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

A Design of Dynamically Simultaneous Search GA-based Fuzzy Neural Networks: Comparative Analysis and Interpretation

  • Park, Byoung-Jun;Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.621-632
    • /
    • 2013
  • In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design methodology. The proposed FNNs are based on 'if-then' rule-based networks with the extended structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits the processing capabilities of the FNNs by supporting their structural and parametric optimization. To evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical examples and its experimental results are compared with those reported in the previous studies.

An Application of Genetic Algorithm to increase Transfer Capacity using Series Capacitor (직렬콘덴서를 이용한 송전용량증대를 위한 유전알고리즘 응용)

  • You, Seok-Ku;Kim, Kyu-Ho;Lee, Kyung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.485-487
    • /
    • 1995
  • This paper proposes a GAs-applied method for power system planning using series capacitors in order to control the flow of power as desired and utilize the existing transmission facilities to its transfer capacity limits. The control strategy problem is formulated as optimization problem. Also, in employing genetic algorithms to solve the optimization problems, real variable-based genetic algorithm is presented to save the coding processing time and obtain more accurate value of the variable. An application to IEEE 57-bus test system proves that the proposed method is effective for improvement of power system transfer capacity.

  • PDF

Efficient Task Offloading Decision Based on Task Size Prediction Model and Genetic Algorithm

  • Quan T. Ngo;Dat Van Anh Duong;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.16-26
    • /
    • 2024
  • Mobile edge computing (MEC) plays a crucial role in improving the performance of resource-constrained mobile devices by offloading computation-intensive tasks to nearby edge servers. However, existing methods often neglect the critical consideration of future task requirements when making offloading decisions. In this paper, we propose an innovative approach that addresses this limitation. Our method leverages recurrent neural networks (RNNs) to predict task sizes for future time slots. Incorporating this predictive capability enables more informed offloading decisions that account for upcoming computational demands. We employ genetic algorithms (GAs) to fine-tune fitness functions for current and future time slots to optimize offloading decisions. Our objective is twofold: minimizing total processing time and reducing energy consumption. By considering future task requirements, our approach achieves more efficient resource utilization. We validate our method using a real-world dataset from Google-cluster. Experimental results demonstrate that our proposed approach outperforms baseline methods, highlighting its effectiveness in MEC systems.

A Study on GA-based Optimized Polynomial Neural Networks and Its Application to Nonlinear Process (유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용)

  • Kim Wan-Su;Lee In-Tae;Oh Sung-Kwun;Kim Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.846-851
    • /
    • 2005
  • In this paper, we propose Genetic Algorithms(GAs)-based Optimized Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional neural networks and can be generated in a dynamic manner. As each node of PNN structure, we use several types of high-order polynomial such as linear, quadratic and modified quadratic, and it is connected as various kinds of multi-variable inputs. The conventional PNN depends on the experience of a designer that select the number of input variables, input variable and polynomial type. Therefore it is very difficult to organize optimized network. The proposed algorithm leads to identify and select the number of input variables, input variable and polynomial type by using Genetic Algorithms(GAs). The aggregate performance index with weighting factor is proposed as well. The study is illustrated with tile NOx omission process data of gas turbine power plant for application to nonlinear process. In the sequel the proposed model shows not only superb predictability but also high accuracy in comparison to the existing intelligent models.

The Application of Load Re-configuration Using Genetic Algorithm for the Distribute Systems Mischance (배전계통 사고시 부하절체 방법의 GA 적용에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • Distribution system loss minimization re-configuration is 0-1 planning problem, and the number of combinations requiring searches is extremely large when dealing with typical system scales. For this reason, the application of a genetic algorithm (GA) seems a tractive to solve this problem. Although Genetic algorithms are a type of random number search method, they incorporate a multi-point search feature and are therefore superior to one-point search techniques. The incorporate of GAs for solving large combinational problem has received wide attention. Further, parallel searching can be performed and the optimal solution is more easily reach ed. In this paper, for improving GA convergence characteristics in the distribution system loss minimization re-configuration problem, a chromosome "Limited Life" concept is introduced. Briefly, considering the population homogenization and genetic drift problems, natural selection is achieved by providing this new concept, in addition to natural selection by fitness. This is possible because individuals in a population have an age value. Simulation were carried out using a model system to check this method's validity.

Breast Cytology Diagnosis using a Hybrid Case-based Reasoning and Genetic Algorithms Approach

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.389-398
    • /
    • 2007
  • Case-based reasoning (CBR) is one of the most popular prediction techniques for medical diagnosis because it is easy to apply, has no possibility of overfitting, and provides a good explanation for the output. However, it has a critical limitation - its prediction performance is generally lower than other artificial intelligence techniques like artificial neural networks (ANNs). In order to obtain accurate results from CBR, effective retrieval and matching of useful prior cases for the problem is essential, but it is still a controversial issue to design a good matching and retrieval mechanism for CBR systems. In this study, we propose a novel approach to enhance the prediction performance of CBR. Our suggestion is the simultaneous optimization of feature weights, instance selection, and the number of neighbors that combine using genetic algorithms (GAs). Our model improves the prediction performance in three ways - (1) measuring similarity between cases more accurately by considering relative importance of each feature, (2) eliminating redundant or erroneous reference cases, and (3) combining several similar cases represent significant patterns. To validate the usefulness of our model, this study applied it to a real-world case for evaluating cytological features derived directly from a digital scan of breast fine needle aspirate (FNA) slides. Experimental results showed that the prediction accuracy of conventional CBR may be improved significantly by using our model. We also found that our proposed model outperformed all the other optimized models for CBR using GA.

  • PDF