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Abstract – In this paper, we introduce advanced architectures of genetically-oriented Fuzzy Neural 
Networks (FNNs) based on fuzzy set and fuzzy relation and discuss a comprehensive design 

methodology. The proposed FNNs are based on ‘if-then’ rule-based networks with the extended 

structure of the premise and the consequence parts of the fuzzy rules. We consider two types of the 

FNNs topologies, called here FSNN and FRNN, depending upon the usage of inputs in the premise of 

fuzzy rules. Three different type of polynomials function (namely, constant, linear, and quadratic) are 

used to construct the consequence of the rules. In order to improve the accuracy of FNNs, the structure 

and the parameters are optimized by making use of genetic algorithms (GAs). We enhance the search 

capabilities of the GAs by introducing the dynamic variants of genetic optimization. It fully exploits 

the processing capabilities of the FNNs by supporting their structural and parametric optimization. To 

evaluate the performance of the proposed FNNs, we exploit a suite of several representative numerical 

examples and its experimental results are compared with those reported in the previous studies. 
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1. Introduction 
 
Computational intelligent techniques such as artificial 

neural networks and fuzzy logic are popular research fields 

because they can deal with complex problems which are 

difficult to solve by classical methods [1]. The fuzzy 

systems that are one of the most important areas of the 

Fuzzy Set Theory have been successfully applied to 

problems in system modeling [2, 3], control [4, 5] and 

classification [6], and resulted in a considerable number of 

applications. In most cases, the key for successful 

modeling was the ability of fuzzy systems to effectively 

incorporate expert knowledge [7]. Fuzzy neural networks 

(FNNs) and genetic fuzzy systems (GFSs) endow methods 

of approximate reasoning that reside within fuzzy systems 

with the learning mechanisms of neural networks and 

evolutionary algorithms. In essence, a GFS is a fuzzy 

system augmented by learning supported by a genetic 

algorithm (GA). Genetic learning support different levels 

of complexity of learning starting from the simplest case of 

parameter optimization (parametric learning) to the 

situations of structural learning level of complexity of 

learning the rule set of a rule based system [7]. FNN 

combines the advantages of both fuzzy inference systems 

in processing granular information and uncertainty and 

neural networks coming with learning abilities by generating 

a knowledge base without the need for involving human 

knowledge [8]. Various methods have been proposed for 

identification of fuzzy “if-then” rules [9, 10]. GA has been 

widely used for eliciting fuzzy models owing to its ability 

to search for optimal solutions in high-dimensional 

solution spaces. GA is a global optimizer based on the 

concepts of natural evolution [7], however when being 

used in a generic form it may lead to a significant 

computing overhead and slow convergence caused by the 

need to explore a huge search space [11]. To eliminate this 

overhead and increase the effectiveness of the underlying 

optimization, we introduce dynamic search-based GA that 

results in a rapid convergence while narrowing down the 

search to a limited region of the search space. To evaluate 

the performance of the proposed modeling approaches, we 

experiment with several representative numerical examples 

and consider a stability measure relating to the approximation 

and the generalization capabilities of a topology. A 

comparative analysis shows that the proposed topologies 

come with higher accuracy and predictive capability in 

comparison with some other models reported in the 

literature. 

The objective of this study is to introduce advanced 

topologies of genetically-oriented fuzzy set/relation neural 

networks (FSNNs/FRNNs) and to develop a general design 

methodology of the proposed FNNs modeling in the 

comprehensive evolutionary development environment 

supporting structural and parametric optimization. In order 

to build optimal FNNs, the structure and the parameter 

optimization are embedded into genetic algorithm (GA). 

The structure optimization involves the determination of 
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the participating input variables standing in the premise 

parts and the polynomial type of the consequent part of 

fuzzy rules. The proposed FNNs topologies developed by 

GA assume that each polynomial is associated with a single 

rule, i.e., the orders of local polynomials are different in 

each fuzzy rule. This expresses characteristics of local 

spaces being formed for nonlinear analysis. The parameters 

of the membership functions for each input variables in 

the premise part are identified by GA while a parametric 

refinement of the consequence part of the network is 

realized through standard back-propagation style of learning.  

The study is organized as follows. In Section 2, we 

discuss a structure of the fuzzy relation neural networks 

based on polynomial inference and elaborate on the 

development of the networks. The detailed genetic design 

of the FNNs comes with an overall description of a 

detailed design methodology in Section 3. In Section 4, we 

report on a comprehensive set of experiments. Finally 

concluding remarks are covered in Section 5.  

 

 

2. Architecture of the Proposed Fuzzy  

Neural Networks 

 

In In this section, we discuss the concept and the 

algorithmic details of the proposed fuzzy neural networks 

(FNNs) based on polynomial inference.  

 

2.1 Fuzzy set neural networks 
 
The fuzzy partitioning of the spaces of input variables is 

divided into two types as shown in Fig.1. In the fuzzy set-

based method, we are concerned with a granulation carried 

out in terms of fuzzy sets defined in each input variable. In 

the fuzzy relation-based method, Space partitioning is 

realized in terms of all input variables being considered 

simultaneously. We also use triangular membership 

functions as illustrated in Fig. 1. 

For an efficient partition, the fuzzy partitioning defined 

in premise part of rules should be focused on essential 

regions in the data meaning that all data should be 

adequately “covered” so that the model is able to infer an 

output for any input. The quality of the overall fuzzy model 

heavily depends on the fuzzy partitioning which underlines 

a need to a careful determination of fuzzy sets as well as a 

suitable selection of the input variables. We will deal with 

these problems within the GA optimization framework. 

As visualized in Fig. 1(a), fuzzy set-based neural 

networks (FSNNs) can be designed by using space 

partitioning realized in terms of the individual variables. 

The fuzzy partitions formed for the individual variables 

gives rise to the topology visualized in Fig. 2. The output 

fk(xk) of the “∑” neuron is described as a non-linear 
function fi as shown in Fig. 2. In this sense, we can regard 

each fi as the following mappings (rules).  

 

 :i k ki kiR If x is A then Cy  (1) 

 
2

(Type0) Zero-order :

(Type1) First-order :

(type2) Second-order :

ki ki

ki ki ki k

ki ki ki k ki k

Cy w

Cy w w x

Cy w w x w x

 =


= +
 = + +

 (2) 

 

In other words, the neurons located between each input 

variable and output (fk) are represented by (2) with a 

nonfuzzy (numeric) conclusion, Cyki. Being more specific, 

Ri is the i-th fuzzy rule while Aki denotes a fuzzy variable 

of the premise of the corresponding fuzzy rule. In this 

paper, we propose the fuzzy polynomial inference based 

FNNs with respect to the form assumed by Cyki. 

The topology of the proposed FSNNs is constructed by 

combining the scheme of fuzzy polynomial inference with 

neural networks. In this section, we elaborate on the 

pertinent algorithmic details of the design by exploiting the 

functionality of the individual layers of the network. The 

notation used in the Fig. 2 requires some clarification. The 

circles denote units of the FSNNs, the symbol ‘N’ points at 

a normalization procedure applied to the membership 

grades of the input variable xi and ‘Π’ refers to the product 
of all incoming signals. i is the i-th rule, k is the k-th input 

variable and wT0, wT1, and wT2 are the corresponding 

connections (weights). 

The output of each node in the 5th layer is inferred by the 

    

(a) Fuzzy Set-based MF     (b) Fuzzy Relation-based MF 

Fig. 1. Fuzzy partitioning of input variables 
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Fig. 2. Architecture of fuzzy set-based neural networks 



Byoung-Jun Park, Wook-Dong Kim and Sung-Kwun Oh 

 623 

center of gravity method expressed as 
 

 
1

1

( )

n

ki ki

i
k k n

ki

i

Cy

f x

µ

µ

=

=

⋅

=
∑

∑
  (3) 

 

where n is the number of membership function specified 

for each input variable. 

The output of the FSNNs ŷ is governed by the 

following expression 
 

 1 1 2 2

1

ˆ ( ) ( ) ( ) ( )

m

m m k k

k

y f x f x f x f x
=

= + + + =∑⋯   (4) 

 
with m being the number of the input variables (viz. the 

number of the outputs fk’s of the “∑” neurons in the 
network).  

We are concerned with the number of variables in the 

rules and the order of the polynomial standing in the 

corresponding rule. The number of rules relates to the 

number of the membership function. The number of the 

fuzzy sets induces the number of the rules and the fuzzy 

partitions are the realizations of the linguistic terms such as 

LOW, HIGH, etc. Each triangular membership function Aki 

standing in the premise part of the rule complements the 

neighboring (adjacent) fuzzy sets (where the comple-

mentation is sought in terms the negation of fuzzy sets). 

The determination of the consequence network of rules 

relates to the order of polynomials standing in this part of 

the rules. The degrees of local polynomials could vary 

from rule to rule. The flexibility of this nature is 

instrumental in nonlinear modeling completed by rule-

based fuzzy models. 

 

2.2 Fuzzy relation neural networks 
 

In the fuzzy relation-based neural networks (FRNNs), 

the premise part of rules is designed by using space 

partitioning realized in terms of the all input variables as 

shown in Fig. 1(b). Fig. 3 shows the architecture of the 

FRNNs in case of two inputs and single output structure, 

where for each input we consider two membership 

functions 

For the k-dimensional input space, the proposed FRNNs 

involve the following rules. 

 

 1 1 2 2:i i i

k ki i

R If x is A and x is A and

and x is A then Cy

⋯

 (5) 
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 = + + + + + +

⋯

⋯ ⋯

 

  (6) 

 

Fig. 3. Architecture of fuzzy relation-based neural networks 

 

where, i is the i-th rule, k is the k-th input variable and w0i, 

wki, and wk+ji are connections (weights) as shown in Fig. 3. 

The notation used in the figure requires some clarification. 

The ‘circles’ denote units of the FRNNs, ‘N’ refers to a 

normalization procedure applied to the membership grades 

and ‘Π’ and ‘∑’ are the product and the summation 

operations of all incoming signals, respectively.  

The polynomial of the consequence part in FRNNs leads 

to the networks with the connections shown in Fig. 3. This 

network involves simplified (Type 0), linear (Type 1) and 

modified quadratic (Type 2) fuzzy inference mechanism. 

The output ŷ  of FRNNs is determined as follows 

 

 1 1 1

1

ˆ ( )

n n n

i i
i i i n

i i i
i

i
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 (7) 

 

The fuzzy rules of the FRNNs in (7) are constructed 

based on all combinations of Aki, that is, each membership 

function is not independent from the corresponding fuzzy 

inference rule. As we can observe in Fig. 3, the number of 

input variables and their partition realized by membership 

functions for the input variable may not always be equal to 

each other. This implies that we can produce a rather 

reasonable partition of space for each input variable. In 

other words, the partitions of the input space could be 

constructed by considering some relationships between 

inputs and output variables. 

In order to avoid the rapid increase in the number of the 

parameters of the polynomial, we design the FRNNs 

comprising consequence network with various types of 

fuzzy rules. That is, FRNNs consists of an aggregate of a 

fuzzy rule composed of premise (if) and consequence 

(then) with a polynomial different from a polynomial type 

of other fuzzy rules such as (8) and Fig. 3. The polynomials 

of fuzzy rules result from how we look at a fuzzy subspace 
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(a fuzzy rule) and then increase the order of the polynomial 

of the fuzzy rule (subspace). This methodology can help 

effectively reduce the number of parameters and improve 

the performance of the model.  

 

 

1

1 11 2 21 1 01
2

1 11 2 22 2

02 12 1 22 2 32 1 2
3

1 12 2 21 3

03 13 1 23 2
4

1 12 2 22 4 04

:

:
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R If x is A and x is A then Cy w

R If x is A and x is A then Cy

w w x w x w x x

R If x is A and x is A then Cy

w w x w x

R If x is A and x is A then Cy w

=

= + + +

= + +
=

 (8) 

 

The determination of the input variables from the set of 

all variables is realized independently for the premise and 

consequence parts of the FRNNs. Even though a variable is 

not selected in the premise part of FRNNs, it could appear 

in the consequence part of the FRNNs. This means that the 

variable already being eliminated from the premise part can 

still play an important role in the formulation of the fuzzy 

subspace. Therefore, such selection strategy may improve 

the performance of the proposed FRNNs. 

 

2.3 Learning of fuzzy neural networks 
 

The main advantage of fuzzy neural networks (FNNs) is 

that it considers both local and global relationships 

between inputs and outputs in system modeling. FNN can 

be constructed solely from the experimental process, i.e., 

learning process is based on input-output data. A properly 

trained FNN could result in significant generalization 

capabilities.  

In this paper, there are two main facets of learning of 

FNNs are considered, i.e., structure optimization and 

parameter estimation. The structural learning of the FNNs 

is to select input variables in premise and the polynomial 

type of the consequent of the fuzzy rules. The parameter 

learning of the proposed networks involves the location of 

membership functions in the premise and connection 

weights (coefficients of polynomial) in the consequence of 

fuzzy rules. The development of the proposed network is 

realized through genetic optimization (GA) and back 

propagation (BP). 

We deal with the approach to build appropriate structure 

of FNNs and to determine membership parameters in the 

premise part of fuzzy rules using genetic algorithm while 

the parameters in consequence of rules are adjusted by the 

standard BP method based on the observed input and 

output data. This helps address important issues of 

structural optimization and reaching a global minimum 

when carrying out an extensive parametric optimization. 

As mentioned above, the parametric refinement of the 

consequence part of the FNNs is realized by adjusting the 

values of the connections see Fig. 2 and 3, through the 

standard BP algorithm. We use the squared error measure 

to quantify the learning error of the form 

 
2ˆ( )p p pE y y= −   (9) 

 
where Ep is an error for the p-th data, yp is the p-th target 

output data and ˆ
py stands for the p-th output of the 

network for the corresponding data. For N input-output 

data pairs, an overall (global) performance index is a sum 

of errors  
 

 
2

1

1
ˆ( )

N

p p

p

E y y
N =

= −∑   (10) 

 
As far as learning is concerned, the connections are 

adjusted while the updates are quite standard  
 

 ( ) ( )w new w old w= + ∆ , where 
pE

w
w

η
∂ 

∆ = − 
∂ 

 (11) 

 

For the parameters in the consequent of the FNNs shown 

in Fig. 2, we derive the changes w∆  as follows 

 

In case of FSNNs: 

2
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∆ + = − + ∆  
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∆ + = − + ∆ 

 

  (12) 

 

In case of FRNNs: 
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  (13) 
 

where, η and α are learning coefficients with the values 
constrained to the unit interval. Quite commonly to 

accelerate convergence, a momentum term is being added 

to this learning expression. In the learning process of the 

consequent part of the FNNs, the adjustments of weights in 

Second-order embrace those present in Zero-order and 

First-order, in the same manner the networks architecture.  

The performance of the FNNs depends on the learning 

algorithm. The BP is commonly used and it has been 

proven to exhibit superior performance over other types of 

learning algorithms for specific problems. However, 

because of gradient descent, the BP method has been 

criticized for its shortcoming of being stuck in the local 

minima and sensitivity to the initial values. In order to 

enhance the performance of the learning process, the 

genetic learning is sought as a sound alternative. 

 

 

3. Genetically-oriented Fuzzy Neural Networks 

 

In this section, we introduce new architectures and 
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comprehensive design methodologies of genetically-oriented 

fuzzy set neural networks. For this genetically-oriented 

architecture, the dynamic search-based genetic algorithm 

(GA) is proposed. 

 

3.1 Dynamic genetic optimization 
 

To carry out an efficient genetic search, one should be 

aware of the fact that GA could run into some pitfalls and 

the search could become stagnant. One factor leading to 

such stagnation could be an improper representation of the 

search space. Generally, the search space is predefined for 

a given system and subsequently a length of the string is 

fixed in advance. We introduce a dynamic search-based 

GA. 

This version of GA determines an optimal solution 

through successive adjustments of the search range. The 

adjustments of the range are based on the moving distance 

of a basis solution. By a basis solution we mean the one 

that has been previously determined for sufficiently large 

space. The procedure of adjusting space in each step of the 

dynamic search-based GA, refer to Fig. 4, can be explained 

as follows. 

 

Fig. 4. Concept of the dynamic search-based GA 

 

[Step 1]  For a given problem, we set search space (range), 

string length for the space and a basis solution. The 

strings (chromosomes) are of some fixed length equal 

to L. 

[Step 2]  The genetic optimization is realized using the 

standard operators (reproduction, crossover, mutation). 

[Step 3]  Once the search has been completed meaning that 

the solution has been unchanged over some generations, 

the value is compared with the previously defined basis 

solution. The basis solution is reset by the solution 

obtained from GA, and then the search range is adjusted 

based on the reset basis solution to facilitate drawing an 

optimal solution. The movement distance (variation) of 

the basis solution is expressed as the difference between 

previously basis value and the presently selected value 

that is 
 

 basis searchx x x∆ = −  (14) 

 basis searchx x=  (15) 

 [ ( ), ( )]range basis basisx x x x xε ε∆ ∆= − ⋅ + ⋅  (16) 

 
where, xbasis is a basis solution, xsearch result from GA, 

x∆ is the variation (difference) between a basis solution 

and the selected solution, xrange forms a new search 

space and ε is an arbitrary positive constant namely, ε>0. 

The variation represents the movement of the basis 

solution.  

[Step 4]  For the new range, GA carries out search process 

by repeating Steps 2 and 3. Here, the variation of the 

basis solution is continuously checked, the selection of 

ε which we could refer to as the “variation factor” is 
going to be proportional to this variation. If the 

variation assumes large values then ε becomes equal to 

1 or even larger than 1. The large variation indicates 

that the search range was inappropriate, so the search 

has to be confined to another search range such as the 

one illustrated in Fig. 4. Small variations indicate that 

the parameter is located within a neighborhood of the 

optimal solution, so, the search space could be further 

scaled down to allow for further fine tuning. While not 

changing the length of the string, we have accomplished 

an effect of the higher resolution and in this way 

supported the fine-grain search. 

[Step 5]  Once we have achieved satisfactory solution or 

No. further improvement has been reported, we 

terminate the optimization process. 

 

The key features of the proposed dynamic search- based 

GA can be outlined as follows: 

• It assures us that a suitable search space has been 

formed  

• It diminishes the charge in the string length for the 

refinement of an optimal solution in a search space; 

there is No. increase in string length for refining an 

optimal solution. 

• It increases the precision of search (viz. a precise 

solution could be reached without resorting to longer 

binary strings) 

 

3.2 Structural and parametric optimization 
 
As stated earlier, for optimal FNNs the structure and the 

parameters of the networks are subject to the GA 

optimization. The structure optimization involves the 

determination of the participating input variables in the 

premise and consequence parts, respectively, and the 

specification of the type of consequent polynomial of the 

fuzzy rules. Structure optimization at the level of the 

premise can be viewed as a problem of combinatorial 

optimization aimed at building significant rules out of a 
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given suite of input variables. The optimization of the 

membership parameters in the premise part concentrates on 

essential regions implied by the structure (distribution) of 

the data. All of these components of the model are 

constructed by running the genetic optimization. 
 
[Step 1]  We select model’s inputs on a basis of the content 

of the chromosome. These selected inputs are used for 

the premise and the consequence part of the rules as 

illustrated in Fig. 2 and 3. 

[Step 2]  For the selected input variables, a subspace is 

defined in terms of the fuzzy relation. In order to 

partition the required space, the chromosome contains 

the values of the parameters and specifies the number of 

the membership functions for each input variable.  

[Step 3]  Here the consequence part of FNNs is decided 

upon on a basis of the content of the chromosome. 

Namely, the inputs are selected and the orders of the 

polynomials in the consequence part of the rules are 

determined.  

[Step 4]  The outputs of FNNs are computed. 

[Step 5]  In order to adjust the values of the connections, 

the parametric learning is invoked with the parameters 

η and α whose values are contained in the corresponding 
entries of the chromosome. 

[Step 6]  Each chromosome for the individual is evaluated 

on a basis of the fitness function computed for the 

optimized FNNs. Here PI is the performance index of 

the model whose value is determined for a given dataset. 

 

 
1

1
Fitness function

PI
=

+
 (17) 

 

[Step 7] While searching for an optimal solution, Steps 1 to 

6 are repeated. The best chromosome corresponds to the 

optimal FNNs. 

 

 

4. Experimental Studies 

 

In this section, we report on the performance of the 

proposed FNNs when using a number of well-known 

experimental benchmarks. The values of the parameters of 

the GA are shown in Table 1. It is worth noting that the 

specific numeric values of these parameters were obtained 

as a result of intensive experimentation. As a matter of fact, 

these specific numeric values are very much in line with 

the values that could be encountered in the literature.  

Table 1. Numeric values of the GA optimization  

Parameters Values 

Number of generations 1000 

Population size 60 

Selection operator Tournament 

Crossover operator [rate] Two-point [0.75] 

Mutation operator [rate] Uniform [0.065] 

 

4.1 Three-input nonlinear function  

 

The In this experiment, we use the same numerical data 

as considered in [2]. The three-input nonlinear function is 

given as 
 

 0.5 1 1.5 2

1 2 3(1 )y x x x− −= + + +  (18) 

 
We consider 40 pairs of the original input-output data 

sampled from the input range [1, 5]. The choice of data is 

motivated by the possibility of running comparative 

analysis with some previous studies. 20 out of 40 pairs of 

input-output data are used as a learning set and the 

remaining part serves as a testing set. The performance 

index (PI) for the model is defined in the form 
 

 
1

ˆ| |1
100

N
p p

pp

y y
PI

N y=

−
= ×∑  (19) 

 
where PI is denoted by API and GPI for the training set and 

the testing set, respectively. 

Table 2 summarizes the results of learning. In case of (b), 

 

Fig. 5. Structure of chromosome for simultaneous turning optimization  

 

Table 2. Performance index of FNNs for nonlinear function 

Str Case Inputs MFs Types API GPI 

x1,x2 {2,2} All is 0 11.73 23.70 

x1,x2 {2,2} All is 1 11.52 14.78 (a)-I 

x1,x2 {2,2} All is 2 11.01 13.93 

(b)-I x1,x2 Tuned Tuned 10.47 9.67 

x1,x2,x3 {2,2,2} All is 0 1.939 5.174 

x1,x2,x3 {2,2,2} All is 1 1.705 5.168 (a)-II 

x1,x2,x3 {2,2,2} All is 2 11.73 23.70 

FR 

(b)-II x1,x2,x3 Tuned Tuned 0.259 0.637 

x1,x2 {2,2} All is 0 14.94 15.10 

x1,x2 {2,2} All is 1 11.14 12.93 (a)-I 

x1,x2 {2,2} All is 2 10.99 12.76 

(b)-I x1,x2 Tuned Tuned 10.02 9.012 

x1,x2,x3 {3,3,3} All is 0 6.767 9.954 

x1,x2,x3 {3,3,3} All is 1 5.082 7.188 (a)-II 

x1,x2,x3 {3,3,3} All is 2 4.484 7.103 

FS 

(b)-II x1,x2,x3 Tuned Tuned 3.419 3.940 

Str: Structure; (a): Without Optimization; (b): With Optimization 
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here the values for the ‘Inputs’, ‘MFs’ and ‘Types’ terms 

are obtained by the GA while values of (a) are selected by 

author in order to compare (a) with (b). In describing 

membership functions, the notation {2, 2, 2}, {2, 2} etc. 

indicates the number of membership functions assigned to 

the selected input variables. 

As shown in Table 2, the performance of model with the 

optimization mechanism (b) is superior to the model without 

optimization (a). In case of the model without optimization 

(a), the values of membership function of premise part 

are fixed and the polynomial type of consequent part 

corresponding fuzzy rules is same. In case of the model 

with optimization (b)-II, for the selected inputs x1, x2, and 

x3, the performance of FRNNs is better than FSNNs.  

The fuzzy rules of FR (b)-II and FS (b)-II are 2×2×2 = 8 

and 3+3+3 = 9. The fuzzy rules are expressed as follows: 

 

FR (b)-II: 
1

1 11 2 21 3 31 1 1 3
2

1 11 2 21 3 32 2 1 3 1 3
3

1 11 2 22 3

:              15.995 15.995 0.79

:              11.038 12.47 1.696 0.683

:            

R If x is A and x is A and x is A then Cy x x

R If x is A and x is A and x is A then Cy x x x x

R If x is A and x is A and x is

= + +
= + − −

31 3 1 2 3

1 2 1 3 2 3
4

1 11 2 22 3 32 4 1 2 3
5

1 12 2 21 3 31

  11.399 11.642 0.616 2.764

0.536 3.279 0.013

:              7.337 10.870 1.236 0.856

:             

A then Cy x x x

x x x x x x

R If x is A and x is A and x is A then Cy x x x

R If x is A and x is A and x is A

= + − +
+ −

= + − −

5
6

1 12 2 21 3 32 6 1
7

1 12 2 22 3 31 7
8

1 12 2 22 3 32 8

 2.993

:              2.333 2.333

:              2.179

:              2.034 2.0

then Cy

R If x is A and x is A and x is A then Cy x

R If x is A and x is A and x is A then Cy

R If x is A and x is A and x is A then Cy

=
= +
=
= + 1 2 334 7.533 4.453x x x− −

   

  (20) 

FS (b)-II: 
1

1 11 1
2

1 12 2
3 2

1 13 3 1 1
4

2 21 4
5

2 22 5 2
6

2

:       15.995

:       7.957

:       0.128 0.136 0.136

:       28.787

:       45.654 69.545

:    

R If x is A then Cy

R If x is A then Cy

R If x is A then Cy x x

R If x is A then Cy

R If x is A then Cy x

R If x is A

=
= −
= − + +
=
= − +

2

23 6 2 2
7

3 31 7
8

3 32 8
9

3 33 9 3

   8.782 8.782 8.782

:       15.482

:       9.417

:       14.151 3.111

then Cy x x

R If x is A then Cy

R If x is A then Cy

R If x is A then Cy x

= + +
=
= −
= − +

 (21) 

 

As shown in (20) and (21), the orders (types) of the 

polynomials in the consequence part of fuzzy rules are 

different each other. In the sequel, the consequence 

structure optimized by GA offers the better performance as 

well as its simplicity. 

The fuzzy rules of FR are lower than FS, however, FR 

consists of many parameters such as membership function 

and weight connection. As a result, although the fuzzy rules 

of FR are lower, the performance of FR is better than FS. 

The estimated membership function in FRNNs and 

FSNNs are shown in Figs. 6(a) and (b), respectively.  

Fig. 7 denotes the convergence line of performance 

denoted by the BP learning process. 

As shown in Fig. 7, the performance index of FRNNs is 

API=0.259 and GPI=0.637 while FSNNs is API=3.419 and 

GPI=3.940. The learning rate and momentum term of 

FRNNs and FSNNs are 0.3996, 0.0080, 0.1351, and 10e-8, 

respectively.  

Table 3 brings forward a comparative analysis including 

several previous models reported in the literature. A 

quadratic type of polynomial was used as a polynomial 

networks while a standard neural network and a RBF 

neural network are also used. Sugeno’s model I and II were 

fuzzy models based on the linear fuzzy inference method 

while Shin-ichi’s models built rules by using mechanisms 

of neurocomputing. The studies presented in [10] are based 

on fuzzy-neural networks using HCM clustering and 

evolutionary fuzzy granulation. Remarkably, the proposed 

A21 A22

0.051 0.471
x2

A11 A12

0.879 1.646
x1

A31 A32

0.001 0.289
x3  

(a) Membership function of FRNNs 

 

(b) Membership function of FSNNs 

Fig. 6. Values of membership function of FNNs 
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Fig. 7. BP learning process of FNNs 

 

Table 3. Comparison analysis of performance index of 

several selected model  

Model API GPI 
No. of 

rules(nodes) 

Polynomial networks 5.78 6.82 10 nodes 

Standard Neural Networks 0.047 1.104 15 nodes 

RBF neural networks 0.008 8.33 17 nodes 

Linear model 12.7 11.1 - 

GMDH [12] 4.7 5.7 - 

Fuzzy I 1.5 2.1 3 rules 
Sugeno's [2] 

Fuzzy II 1.1 3.6 4 rules 

FNN Type 1 0.84 1.22 8 rules 

FNN Type 2 0.73 1.28 4 rules Shinichi's [13] 

FNN Type 3 0.63 1.25 8 rules 

Simplified [10] 2.865 3.206 9 rules 
FNN 

Linear [10] 2.670 3.063 9 rules 

Simplified [14] 0.865 0.956 36 rules 
Multi FNN 

Linear [14] 0.174 0.689 18 rules 

FRNNs 0.259 0.637 8 rules 
Proposed FNNs 

FSNNs 3.419 3.940 9 rules 
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FRNNs come with higher accuracy and improved prediction 

capabilities. 

 

4.2 Gas furnace time series process 
 
Here we illustrate the performance of the network and 

elaborate on its development by experimenting with the 

classic Box-Jenkins gas furnace data. The time series data 

(296 input-output pairs) resulting from the gas furnace 

process has been intensively studied in the previous 

literature [19, 21].  

The delayed terms of methane gas flow rate, u(t) and 

carbon dioxide density, y(t) are used as system input 

variables such as u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), and 

y(t-1) represented as [x1,x2,x3,x4,x5,x6]. The first half of 

the dataset was used for training. The remaining part of the 

series serves as a testing set. The performance index, API 

and GPI, is defined as described by (10). 

Table 4 shows the detailed results of FNNs. In case of 

the FRNNs selected three inputs (u(t-3), y(t-2), and y(t-1)), 

the best network came with the values of the performance 

index of API=0.0278 and GPI=0.0971.  

Fig. 8 denotes preferred architecture obtained by GA of 

FRNNs and FSNNs, respectively. FRNNs and FSNNs 

consist of 3 inputs while fuzzy rules consist of 8 in case of 

FRNNs and 9 in case of FSNNs. 

Table 5 denotes the values of the weight connections 

related the architecture of FNNs in Fig. 10.  

 

Table 5. Values of the connection weights of FNNs 

Connection weights 
S R 

w0 w1 w2 w3 w4 w5 w6 

1 44.43 3.72 16.33 18.76 -0.99 -1.00 7.60 

2 46.46 -3.59 16.45 18.43 -4.72 -5.45 5.26 

3 37.69 - - - - - - 

4 36.37 -1.54 19.77 8.61 - - - 

5 43.94 - - - - - - 

6 62.83 -12.1 17.53 21.55 - - - 

7 39.26 - - - - - - 

FR 

8 32.97 2.36 15.35 8.48 0.07 -1.45 6.97 

1 14.75 0.328 0.017 - - - - 

2 16.22 -3.44 1.442 - - - - 

3 16.15 -3.20 - - - - - 

4 20.71 2.291 0.228 - - - - 

5 17.06 - - - - - - 

6 9.359 3.158 - - - - - 

7 12.73 6.887 1.845 - - - - 

8 16.05 6.792 5.523 - - - - 

FS 

 18.34 9.411 2.730 - - - - 

S: Structure; R: rule 

  

(a) Architecture of FRNNs                        (b) Architecture of FSNNs 

Fig. 8. Architecture of the FNNs 

Table 4. Values of performance index of FNNs for the gas 

furnace time series process  

Str Case Inputs MFs Types API GPI 

x1, x6 {2,2} All is 0 0.0234 0.3389 

x1, x6 {2,2} All is 1 0.0244 0.3563 (a)-I 

x1, x6 {2,2} All is 2 0.0245 0.3523 

(b)-I x1, x6 Tuned Tuned 0.0403 0.2674 

x1, x5, x6 {2,2,2} All is 0 0.0188 0.2400 

x1, x5, x6 {2,2,2} All is 1 0.0184 0.2138 (a)-II 

x1, x5, x6 {2,2,2} All is 2 0.0188 0.2074 

FR 

(b)-II x1, x5, x6 Tuned Tuned 0.0278 0.0971 

x1, x6 {2,2} All is 0 0.0231 0.3380 

x1, x6 {2,2} All is 1 0.0232 0.3398 (a)-I 

x1, x6 {2,2} All is 2 0.0236 0.3357 

(b)-I x1, x6 Tuned Tuned 0.0322 0.2938 

x1, x5, x6 {3,3,3} All is 0 0.0289 0.2617 

x1, x5, x6 {3,3,3} All is 1 0.0224 02612 (a)-II 

x1, x5, x6 {3,3,3} All is 2 0.0223 0.2624 

FS 

(b)-II x1, x5, x6 Tuned Tuned 0.0299 0.1073 

Str: Structure; (a): Without Optimization; (b): With Optimization 
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Fig. 9 shows how the optimization was carried out by 

the GA and BP, respectively. 

 

 

(a-1) GA optimization           (a-2) BP learning 

(a) FRNNs 
 

 

(b-1) GA optimization          (b-2) BP learning 

(b) FSNNs 

Fig. 9. Performance index reported in successive generations 

and iterations 

 

Table 6 contrasts the performance of several models with 

the proposed networks. The comparative results reveal that 

the proposed approach leads to a flexible architecture 

appropriate for the given dataset and shows better results 

than the others both in terms of better approximation and 

generalization capabilities and stability index. 

 

Table 6. Comparative analysis of performance of several 

models of the gas furnace data  

Model API GPI 
No. of 

rules 

Polynomial neural networks 0.022 0.143 10 nodes 

Standard Neural Networks 0.021 0.398 10 nodes 

RBF neural networks 0.024 0.378 15 nodes 

Kim, et al.'s model [15] 0.034 0.244 2 rules 

Lin and Cunningham's model [16] 0.071 0.261 4 rules 

Tsekouras’ model [17] 0.016 0.236 7 rules 

Simplified 0.023 0.344 4 rules 
GA [18] 

Linear 0.018 0.264 4 rules 

Simplified 0.755 1.439 6 rules 
HCM+GA [19] 

Linear 0.018 0.286 6 rules 

Simplified 0.024 0.329 4 rules 

Fuzzy 

Hybrid [20] 

(GA+Complex) Linear 0.017 0.289 4 rules 

FRNNs 0.0278 0.0971 8 rules 
Proposed FNNs 

FSNNs 0.0299 0.1073 9 rules 

 

4.3 NOx emission process of gas turbine plant 
 
A NOx emission process is modeled using the data of 

gas turbine power plants. Till now, almost NOx emission 

processes are based on “standard” mathematical model in 

order to obtain regulation data from control process. However, 

such models do not efficiently capture the relationships 

between variables of the NOx emission process and the 

parameters of the model. 

The input variables include AT (Ambient Temperature at 

site, in degrees F), CS (Compressor Speed, in rpm), LPTS 

(Low Pressure Turbine Speed, in rpm), CDP (Compressor 

Discharge Pressure, in psi), and TET (Turbine Exhaust 

Temperature, in degrees F). The output variable is NOx (in 

parts per million-volume dry). Those are denoted as 5 

inputs-1 output pair [x1, x2, x3, x4, x5; y]. We consider 

that 130 out of 260 pairs of input-output data are used as a 

learning set; the remaining part of data serves as a testing 

set. The performance index, API and GPI, is defined as 

described by (10). 

Table 7 summarizes the detailed results of the FNNs. 

The number of membership functions is equal to two, three 

or four for each input variable. 

 

Table 7. Values of performance index of FNNs for the 

NOx emission process 

Str Case Inputs MFs Types API GPI 

x2, x4, x5 {2,2,2} All is 0 11.55 17.76 

x2, x4, x5 {2,2,2} All is 1 6.151 10.53 (a)-I 

x2, x4, x5 {2,2,2} All is 2 5.679 9.915 

(b)-I x2, x4, x5 Tuned Tuned 1.026 3.381 

x2,x3, x4, x5 {2,2,2,2} All is 0 9.292 14.78 

x2,x3, x4, x5 {2,2,2,2} All is 1 1.531 2.709 (a)-II 

x2,x3, x4, x5 {2,2,2,2} All is 2 1.026 3.381 

FR 

(b)-II x2,x3, x4, x5 Tuned Tuned 0.130 0.243 

x3, x4, x5 {3,3,3} All is 0 16.43 23.68 

x3, x4, x5 {3,3,3} All is 1 9.89 12.60 (a)-I 

x3, x4, x5 {3,3,3} All is 2 9.66 13.01 

(b)-I x3, x4, x5 Tuned Tuned 4.855 7.072 

x2,x3, x4, x5 {4,4,4,4} All is 0 9.391 11.58 

x2,x3, x4, x5 {4,4,4,4} All is 1 7.537 10.52 (a)-II 

x2,x3, x4, x5 {4,4,4,4} All is 2 7.145 10.25 

FS 

(b)-II x2,x3, x4, x5 Tuned Tuned 5.111 6.988 

Str: Structure; (a): Without Optimization; (b): With Optimization 

 

From the obtained results, we conclude that FRNNs 

model is an effective alternative, which outperforms the 

model formed the fuzzy set. For NOx emission process of 

gas turbine power plant, the FRNNs with 4 inputs and 16 

fuzzy rules are preferred. It comes with the values of the 

performance API=0.130, and GPI=0.243. Fig. 10 shows the 

genetic optimization of the FRNNs and FSNNs.  

The outputs of the FRNNs for the training data and 

testing data are as shown in Fig. 11. We note a significant 

coincidence between the data and the results produced by 

the model.  

Table 8 covers a comparative analysis including several 

previously built neural networks and FNN. FNN [10] was 

identified by hybrid algorithm combining GAs with 

modified complex method. The experimental results 

clearly reveal that the proposed approach and the resulting 
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model outperform the existing networks. 

 

4.4 Weather information of izmir 

 

We consider the weather information of Izmir in turkey 

from 01/01/1994 to 31/12/1997. In order to reduce CPU 

time, the number of generations for GA is set to 500 times 

and other parameters are equal as shown in Table 2.  

Table 9 shows the values of the performance index of 

FSNN and FRNN for weather information dataset. 

Table 10 offers a comparative analysis including several 

models used in the literature. The multiobjective linguistic 

fuzzy rule-based system [21, 22] were based on the 

Mamdani fuzzy system and employed the multiobjective 

optimization techniques both concurrently learn rules and 

parameters and to learn only rules. 

Table 9.Values of performance index of FNNs 

Str Case Inputs MFs Types API GPI 

x1,x2,x3,x7 All is 2 0 0.832 0.946 

x1,x2,x3,x7 All is 2 1 0.825 0.973 (a)-I 

x1,x2,x3,x7 All is 2 2 0.832 0.983 
FR 

(b)-I x1,x2,x3,x7 Tuned Tuned 0.556 0.640 

x1,x2,x3,x6,x7,x8 All is 2 0 1.140 1.308 

x1,x2,x3,x6,x7,x8 All is 2 1 0.773 1.010 (a)-I 

x1,x2,x3,x6,x7,x8 All is 2 2 1.317 1.520 
FS 

(b)-I x1,x2,x3,x6,x7,x8 Tuned Tuned 0.702 0.889 

Str: Structure; (a): Without Optimization; (b): With Optimization 

 

Table 10. Comparative analysis of performance index of 

several selected models  

Model API GPI 
No. of 

rules (nodes) 

Rule base 2.05 2.38 23 rules NSGA-II Linguistic 

fuzzy rule-based 

system[21] 
Knowledge base 1.64 1.91 22 rules 

Rule base 1.62 1.89 25 rules PAES Linguistic fuzzy 

rule-based system[21] Knowledge base 1.30 1.49 25 rules 

MOEA Linguistic fuzzy system[22] 0.92 1.10 29 rules 

FRNNs 0.56 0.64 16 rules 
Proposed FNNs 

FSNNs 0.73 0.72 12 rules 

 

4.5 Economic information of USA  

 

This dataset contains the Economic data information of 

USA from 01/04/1980 to 02/04/2000 on a weekly basis. 

This dataset includes 1049 input-output pairs. There are 

fifteen input variables. The number of generation of GA is 

set to 500 times and other parameters are equal as shown in 

Table 2. 

 

Table 11. Values of performance index of FNNs 

Str Case Inputs MFs Types API GPI 

x5,x7,x11,x12 All is 2 0 0.014 0.099 

x5,x7x11,x12 All is 2 1 0.010 0.082 (a)-I 

x5,x7,x11,x12 All is 2 2 0.013 0.095 
FR 

(b)-I x5,x7,x11,x12 Tuned Tuned 0.022 0.032 

x1,x2,x5,x7,x11,x13, All is 2 0 0.029 0.048 

x1,x2,x5,x7,x11,x13, All is 2 1 0.027 0.034 (a)-I 

x1,x2,x5,x7,x11,x13, All is 2 2 0.024 0.032 
FS 

(b)-I x1,x2,x5,x7,x11,x13 Tuned Tuned 0.018 0.019 

Str: Structure; (a): Without Optimization; (b): With Optimization 

 

Table 12. Comparison analysis of performance index of 

several selected model  

Model API GPI 
No. of rules 

(nodes) 

Rule base 0.16 0.22 7 rules NSGA-II Linguistic 

fuzzy rule-based 

system[21] 
Knowledge  

base 
0.012 0.18 8 rules 

Rule base 0.08 0.12 9 rules PAES Linguistic 

fuzzy rule-based 

system[21] 
Knowledge  

base 
0.08 0.14 11 rules 

MOEA Linguistic fuzzy system[22] 0.04 0.05 18 rules 

Multi-Genetic fuzzy system[23] 0.06 0.09 7 rules 

FRNN 0.022 0.032 16 rules 
Proposed FNNs 

FSNN 0.018 0.019 12 rules 

 

(a) FRNNs                (b) FSNNs 

Fig. 10. GA optimization of FNNs 

 

 

(a) Training         (b) Testing 

Fig. 11. Comparison of output of the FRNNs 

 

Table 8. Comparative analysis of performance of several 

models 

Model API GPI 

No. of 

rules 

(nodes) 

Polynomial networks 0.941 1.806 21 nodes 

Standard Neural Networks 0.015 3.851 25 nodes 

RBF neural networks 0.275 1.469 15 nodes 

Regression model 17.68 19.23 - 

Simplified 6.269 8.778 30 rules 
FNN [10] 

Linear 3.725 5.291 30 rules 

Simplified 2.806 5.164 120 rules 
Multi FNN [14] 

Linear 0.720 2.025 120 rules 

1.026 3.381 8 rules 
Proposed FNNs FRNNs 

0.130 0.243 16 rules 
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Table 11 shows the performance index of FNNs for 

economic information dataset. 

Table 12 reports on the performance of several models 

with the proposed model. The multi-genetic fuzzy system 

[31] was initialized by a method that combines the benefits 

of Wang-Mendel (WM) and decision-tree algorithm and 

then the optimization is performed by NSGA-II. 

 

 

5. Concluding Remarks 

 

In this study, we introduce advanced architectures of 

genetically-oriented Fuzzy Neural Networks (FNNs) based 

on fuzzy set and fuzzy relation. Given the large search 

space associated with the development of FNNs, we 

enhance the search capabilities of GAs by introducing their 

dynamic variants. The series of numeric experiments 

quantify the efficiency of the proposed approach and shed 

light on the capabilities of the designed architectures. 

The proposed FNNs are based on the rule-based fuzzy 

neural networks with the extended structure of the premise 

and the consequence parts of fuzzy rules being formed 

within the networks. Here three different forms of regression 

polynomials (constant, linear and quadratic) are used in the 

consequence part of the fuzzy rules of FNNs. The structure 

and parameters of the proposed FNNs are genetically 

optimized. 

In the FRNNs and FSNNs, we showed that the proposed 

fuzzy relation-based neural networks (FRNNs) can be 

efficiently carried out both at the structural as well as 

parametric level. As seems to be quite intuitive, the 

simultaneous optimization of the structure and parameters 

of the networks yields better results in comparison to the 

model without the aid of optimization. A suite of 

experimental studies shows better performance of the 

networks introduced in this study in comparison to the 

results obtained for some standard neuro-fuzzy models 

available in the literature 
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