Distributed Hybrid Genetic Algorithms for Structural Optimization

분산 복합유전알고리즘을 이용한 구조최적화

  • Published : 2003.12.01

Abstract

Enen though several GA-based optimization algorithms have been successfully applied to complex optimization problems in various engineering fields, GA-based optimization methods are computationally too expensive for practical use in the field of structural optimization, particularly for large- scale problems. Furthermore, a successful implementation of GA-based optimization algorithm requires a cumbersome and trial-and-error routine related to setting of parameters dependent on a optimization problem. Therefore, to overcome these disadvantages, a high-performance GA is developed in the form of distributed hybrid genetic algorithm for structural optimization on a cluster of personal computers. The distributed hybrid genetic algorithm proposed in this paper consist of a simple GA running on a master computer and multiple μ-GAs running on slave computers. The algorithm is implemented on a PC cluster and applied to the minimum weight design of steel structures. The results show that the computational time required for structural optimization process can be drastically reduced and the dependency on the parameters can be avoided.

최근 구조최적화분야에서 활발하게 사용되고 있는 유전알고리즘은 해집단을 운용하기 때문에, 많은 반복수와 적응도 평가를 위하여 해집단의 수에 해당하는 구조해석을 필요로 하며, 또한 교배율과 돌연변이율 등의 파라미터에 따라 알고리즘의 성능이 변화하므로 문제에, 따라 적합한 파라미터 설정이 필요한 근본적인 단점을 지니고 있다. 본 연구에서는 기존 유전알고리즘의 단점을 극복할 수 있는 복합유전알고리즘을 마이크로유전알고리즘과 단순유전알고리즘을 결합한 형식으로 그리고, 최적화에 요구되는 연산을 다수의 개인용 컴퓨터에서 동시에 분산하여 수행할 수 있는 고성능 분산 복합유전알고리즘으로 개발하였다. 개발된 알고리즘은 철골 가새골조 구조물의 최소중량설계에 적용하여 그 성능을 평가하였다.

Keywords

References

  1. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison- Wesley, 1989
  2. Park, H. S. and Sung, C. W., 'Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers', Computers & Structures, Vol.80, 2002, pp.1305-1316 https://doi.org/10.1016/S0045-7949(02)00073-1
  3. D. T. Pham and D. Karaboga, Intelligent Optimisation Techniques, Springer, 2000
  4. Kamal C. Sarma, 'Bilevel Parallel Genetic Algorithms for Optimization of Large Steel Structural', Computer-Aided Civil and Infrastructure Engineering, Vol.16, No.5, 2001, pp.295 -304 https://doi.org/10.1111/0885-9507.00234
  5. K. Krishnakumar, 'Micro-genetic Algorithms for Stationary and Non-stationary Function Optimization', SPIE, Intelligent Control and Adaptive Systems, Vol.1196, 1989, pp.282-296
  6. De Jong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral Dissertation, The University of Michigan, Ann Arbor, Michigan, 1975
  7. Woo, B. H. and Park, H. S., 'Distributed hybrid genetic algorithms for structural optimization', Preceding of CJK-OSM 2, 2002, pp.117 -122
  8. 우병헌, 박효선, '구조최적화를 위한 마이크로 유전알고리즘 기반 분산 복합 유전알고리즘', 대한건축학회 추계학술발표 논문집, 2002, pp.15-18
  9. Belegundu, A. D. and Chandrupatla, T. R., Optimization Concepts and Applications in Engineering, Prentice Hall, 1999
  10. Zhu, D. M., 'An Improved Templeman's Algorithm for Optimum Design of Trusses with Discrete Member Sizes', Engineering Optimization, Vol.9, 1986, pp.303-312 https://doi.org/10.1080/03052158608902522
  11. Rajeev, S. and Krishnamoorthy, C. S., 'Discrete Optimization of Structures Using Genetic Algorithms', Journal of Structural Engineering, ASCE, Vol.118, No.5, 1992, pp.1233-1250 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
  12. Adeli, H. and Park, H. S., Neurocomputing for Design Automation, CRC Press, 1998