• Title/Summary/Keyword: Genetic Algorithms(GA)

Search Result 462, Processing Time 0.027 seconds

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

Study on Condition Monitoring of 2-Spool Turbofan Engine Using Non-Linear GPA(Gas Path Analysis) Method and Genetic Algorithms (2 스풀 터보팬 엔진의 비선형 가스경로 기법과 유전자 알고리즘을 이용한 상태진단 비교연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

DNA Computing adopting DNA Coding Method to solve Knapsack Problem (배낭 문제를 해결하기 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • 김은경;이상용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.243-246
    • /
    • 2004
  • 배낭 문제는 단순한 것 같지만 조합형 특성을 가진 NP-hard 문제이다 이 문제를 해결하기 위해 기존에는 GA(Genetic algorithms)를 이용하였으나 지역해에 빠질 수 있어 잘못된 해를 찾거나 찾지 못하는 문제점을 갖고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 막대한 병렬성과 저장능력을 가진 DNA 컴퓨팅 기법에 DNA에 기반한 변형된 GA인 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optmization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 GA를 이용한 것 보다 초기 문제 표현에서 우수한 적합도를 생성했으며, 빠른 시간내에 우수한 해를 찾을 수 있었다.

  • PDF

A Study on Diagnostics of Single Performance Deterioration of Aircraft Gas-Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 항공기용 가스터빈 엔진의 단일 결함 진단에 대한 연구)

  • Kim, Seung-Min;Yong, Min-Chul;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.238-247
    • /
    • 2007
  • Genetic Algorithms(GA) which searches optimum solution using natural selection and the law of heredity has been applied to learning algorithms in order to estimate performance deterioration of the aircraft gas turbine engine. The compressor, gas generator turbine and power turbine are considered for engine performance deterioration and estimation for performance deterioration of a single component at design point was conducted. As a result of that, defect diagnostics has been conducted. The input criteria for the genetic algorithm to guarantee the high stability and reliability was discussed as increasing learning data sets. As a result, the accuracy of defect estimation and diagnostics were verified with its RMS error within 3%.

A Parallel Genetic Algorithms for lob Shop Scheduling Problems (Job Shop 일정계획을 위한 병렬 유전 알고리즘)

  • 박병주;김현수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.59
    • /
    • pp.11-20
    • /
    • 2000
  • The Job Shop Scheduling Problem(JSSP) is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on single genetic algorithm(SGA) and parallel genetic algorithm (PGA) to address JSSP. In this scheduling method, new genetic operator, generating method of initial population are developed and island model PGA are proposed. The scheduling method based on PGA are tested on standard benchmark JSSP. The results were compared with SGA and another GA-based scheduling method. The PGA search the better solution or improves average of solution in benchmark JSSP. Compared to traditional GA, the proposed approach yields significant improvement at a solution.

  • PDF

A Novel Multi-focus Image Fusion Scheme using Nested Genetic Algorithms with "Gifted Genes" (재능 유전인자를 갖는 네스티드 유전자 알고리듬을 이용한 새로운 다중 초점 이미지 융합 기법)

  • Park, Dae-Chul;Atole, Ronnel R.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.1
    • /
    • pp.75-87
    • /
    • 2009
  • We propose in this paper a novel approach to image fusion in which the fusion rule is guided by optimizing an image clarity function. A Genetic Algorithm is used to stochastically select, comparative to the clarity function, the optimum block from among the source images. A novel nested Genetic Algorithm with gifted individuals found through bombardment of genes by the mutation operator is designed and implemented. Convergence of the algorithm is analytically and empirically examined and statistically compared (MANOVA) with the canonical GA using 3 test functions commonly used in the GA literature. The resulting GA is invariant to parameters and population size, and a minimal size of 20 individuals is found to be sufficient in the tests. In the fusion application, each individual in the population is a finite sequence of discrete values that represent input blocks. Performance of the proposed technique applied to image fusion experiments, is characterized in terms of Mutual Information (MI) as the output quality measure. The method is tested with C=2 input images. The results of the proposed scheme indicate a practical and attractive alternative to current multi-focus image fusion techniques.

  • PDF

A structural learning of MLP classifiers using species genetic algorithms (종족 유전 알고리즘을 이용한 MLP 분류기의 구조학습)

  • 신성효;김상운
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.2
    • /
    • pp.48-55
    • /
    • 1998
  • Structural learning methods of MLP classifiers for a given application using genetic algorithms have been studied. In the methods, however, the search space for an optimal structure is increased exponentially for the physical application of high diemension-multi calss. In this paperwe propose a method of MLP classifiers using species genetic algorithm(SGA), a modified GA. In SGA, total search space is divided into several subspaces according to the number of hidden units. Each of the subdivided spaces is called "species". We eliminate low promising species from the evoluationary process in order to reduce the search space. experimental results show that the proposed method is more efficient than the conventional genetic algorithm methods in the aspect of the misclassification ratio, the learning rate, and the structure.structure.

  • PDF

A Study on Diagnostics of Complex Performance Deterioration of Aircraft Gas-Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 항공기용 가스터빈 엔진에 대한 복합 결함 진단에 대한 연구)

  • Kim, Seung-Min;Yong, Min-Chul;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.285-288
    • /
    • 2006
  • Genetic Algorithms(GA) which searches optimum solution using natural selection and the law of heredity has been applied to teaming algorithms in order to estimate performance deterioration of the aircraft gas turbine engine. The compressor, gas generation turbine and power turbine are considered for estimation for performance deterioration of a complex component at design point was conducted. As a result of that, complex defect diagnostics has been conducted. As a result, the accuracy of diagnostics were verified with its relative error with in 10% at each component.

  • PDF

Hybrid Fuzzy Controller Using GAs Based on Control Parameters Estimation mode (제어파라미터 추정모드기반 GA를 이용한 HFC)

  • Lee, Dae-Keun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.700-702
    • /
    • 2000
  • The new design methodology of a hybrid fuzzy controller by means of the genetic algorithms is presented. In fuzzy controller which has been widely applied and used. in order to construct the best fuzzy rules that include adjustment of fuzzy sets, a highly skilled techniques using trial and error are required. To deal with such a problem, first, a hybrid fuzzy controller(HFC) related to the optimal estimation of control parameters is proposed. The HFC combined a PID controller with a fuzzy controller concurrently produces the better output performance than any other controller from each control output in steady state and transient state. Second, a auto-tuning algorithms is presented to automatically improve the performance of hybrid fuzzy controller, utilizing the simplified reasoning method and genetic algorithms. In addition, to obtain scaling factors and PID Parameters of HFC using GA, three kinds of estimation modes such as basic, contraction, and expansion mode are effectively utilized. The HFCs are applied to the first-order second-order process with time-delay and DC motor Computer simulations are conducted at step input and the performances of systems are evaluated and also discussed from performance indices.

  • PDF