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Abstract

The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm 

(GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic 

Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most 

established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and 

computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. 

In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some 

individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, 

were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization 

example and the results of the proposed method were compared with those of the traditional method using standard random 

initialization for the initial population of the GA.
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1. Introduction

Topology optimization is one of the useful methods for 

finding the layout of an optimal structure in a given design 

domain for the load-bearing structures. Generally, because 

there are usually two or more loadings on a structure in a 

structural topology optimization problem, it becomes a 

multi-objective optimization problem [1]. In multi-objective 

optimization problems, solutions consist of a Pareto optimal 

set, which can only be improved by degrading at least one of 

its other objectives. The objective in solving multi-objective 

topology optimization problems is to find complete Pareto-

optima solutions [2].

For the topology optimization, various methods have 

been developed [2-8].One popular approach for multi-

objective topology optimization is the solid isotropic 

material with the penalization (SIMP) method (Bendsøe, 

1989) using the weighted sum method [4]. The SIMP 

method redistributes the material throughout the specified 

design domain using an optimality criterion [3]. The SIMP 

method is extended to multi-objective optimization using 

the weighted sum method, because this method is relatively 

easy to implement and finds Pareto-optimal solutions 

quickly. However, the SIMP method has multiple optima 

because most topology design problems have non-convex 

objective functions [4]. Thus, it is difficult to find a single 

optimal solution. Moreover, the weighted sum method 

cannot find a complete Pareto-optimal solution set if the 

objective space is non-convex [2].

To perform global searching and find the complete Pareto-

optimal set, genetic algorithms (GAs) have been increasingly 

used in the multi-objective topology optimization problems. 
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In the GAs, individuals of the GA are evolved simultaneously 

by cooperation and competition. Thus, a GA can find Pareto-

optimal solutions in a single simulation. However, because 

a GA requires a large number of evaluations of objective 

functions, its computational cost becomes high. This 

computational cost problem is the most important factor in 

optimization problems using GAs [8].

In this study, for an efficient multi-objective topology 

optimization method using a GA, the elite initial population 

method was proposed. The elite initial population which 

is similar to local optimum solutions obtained from the 

SIMP with the weighted sum method was used for the 

initial population of the GA. The SIMP with the weighted 

sum method can provide well converged and distributed 

individuals in the objective function space. A local optimum 

solution used as a good initial guess helps to improve the 

efficiency of the GA. In this study, to verify the convergence 

and diversity of Pareto-optimal solutions of the proposed 

method, a standard initial population and an elite initial 

population were compared.

2. Elite initial population

2.1  SIMP with the weighted sum method for a multi-
load case problem

In this study, local optimum solutions, which are obtained 

by SIMP with the weighted sum method, were used for an 

initial population of GA. In the SIMP with the weighted sum 

method, the problem of optimizing the structure topology 

for minimum compliance can be formulated in a discrete 

form as follows.
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computational efficiency of the SIMP method is greater 

than a GA-based method, because it is a gradient-based 

method. However, if the objective function space is multi-

modal (non-convex), the optimization problem has non-

unique solutions when choosing different initial points and 

design parameters for the algorithm [4]. Moreover, although 

implementation of the weighted sum method is very easy, 

it cannot find complete Pareto-optimal solutions [2]. 

Conversely, the GA topology optimization can find complete 

Pareto-optimal solutions more effectively. However, it is 

necessary to reduce the computational cost [8]. 

Therefore, in this study, local optimum solutions obtained 

from the SIMP with the weighted sum method, which is 

more computationally effective than simply using a GA, 

were employed for the initial population of the topology 

optimization to improve the efficiency when using a GA. 

Well converged and distributed local optimum solutions 

19 
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Fig. 1. Comparison of the conceptual diagrams of a traditional GA method and the proposed method 
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become good initial guesses for the GA, and lead to more 

rapid convergence to Pareto-optimal solutions as shown in 

Fig. 1.

2.2 Elite initial population

Figure 1 shows illustrations of the traditional and proposed 

methods. Generally, in the traditional method for GAs, a 

standard random initializing procedure is used for the initial 

population. Its initial population is completely random as 

shown in Fig. 1(a). Conversely, the initial population of the 

proposed method already has well converged and distributed 

solutions, because local optimum solutions were used as 

initial populations as shown in Fig. 1(b). By comparing Figs. 

1(a) and (b), the proposed method is expected to converge 

more rapidly than the traditional method. 

The flowchart of the proposed method is presented in Fig. 

2 and summarized here: 

1) Generate M local optimum solutions using the SIMP 

with the weighted sum method. 

2) Create M×N individuals that have topologies similar 

to each M local optimum solution of Step 1 using topology 

optimization using the GA.

3) Randomly select L individuals obtained from Step 2 for 

the initial population of topology optimization using the GA.

In topology optimization using the GA in Step 2 and 4, 

the bar-system representation method [8] was used for the 

topology representation. It is well known that the choice of a 

topology representation method is critical to the process. In 

the bar-system representation, the positions of the vertices 

and thickness of the bars are used as design parameters 

in the topology optimization using a GA. Mapping on the 

FE mesh is simple in the bar-system representation. If the 

center of gravity of that element lies inside bars, the density 

of the element becomes 1. Thus, the density of an element is 

only 0 or 1. Figure 3 shows the topology example for a bar-

system representation. Figure 3(a) and (b) shows an example 

of the genotype (artificial chromosome) and phenotype (the 

decoded parameter), respectively. 

However, it is difficult to use local optimum solutions 

directly for the initial population of a GA, because properly 

decoded GA genotype must be found, corresponding to local 

optimum solutions with bar-system representation. Thus, 

topology optimization using a GA was used in the Step 2 to 

create individuals corresponding to local optimum solutions. 

We called these individuals the “elite initial individuals”. 

However, it is difficult to find the elite initial individual with 

exactly the same phenotype as the local optimum solution. 

Moreover, there are many genotypes corresponding to one 

phenotype. Thus, N elite initial individuals that have a similar 

phenotype but different genotypes for each local optimum 

solution were found. We present the procedure to create the 

elite initial population as follows.

First, in the FEM element of the local optimal solutions 

of Step 1, if an element has a density below 0.05 it will be 

modified to -0.5. The densities of other elements remain 

as they are. However, if a volume constraint is introduced, 

it is not necessary to modify the density of any elements in 

this step. The density values 0.05 and -0.5 were determined 

empirically. 

Second, to find the proper genotypes corresponding 

to the local optimal solutions, the density distribution of 

the modified local optimal solutions, and the phenotype 

transformed from the genotype using the bar-system 

representation, were compared in Step 2 topology 

optimization using a GA with formula (6) as the objective 

function.
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Fig. 2. Flowchart of the proposed method and comparison of the proposed and traditional methods. 
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First, in the FEM element of the local optimal solutions of Step 1, if an element has a density below 

0.05 it will be modified to -0.5. The densities of other elements remain as they are. However, if a 

volume constraint is introduced, it is not necessary to modify the density of any elements in this step. 

The density values 0.05 and -0.5 were determined empirically.  

Second, to find the proper genotypes corresponding to the local optimal solutions, the density 

distribution of the modified local optimal solutions, and the phenotype transformed from the genotype 

using the bar-system representation, were compared in Step 2 topology optimization using a GA with 

formula (6) as the objective function. 

(6)

where m is the total number of finite elements in the design domain,  is the ith element density 

of the density modified local optimal solution, and  is the i element density of the individual in 

the GA. By using formula (6), the most correct genotype, which corresponds to the local optimal 

(6)

where m is the total number of finite elements in the design 

domain, xs,i is the ith element density of the density modified 

local optimal solution, and xb,i is the i element density of the 

individual in the GA. By using formula (6), the most correct 

genotype, which corresponds to the local optimal solution, 

can be obtained. 

Formula (6) is used as the objective function of 

topology optimization using the GA of Step 2. However, 

the computational cost must be investigated. Because 

formula (6) is a simple sum of the products of a matrix, its 

computational cost will be low. We present an example of 

formula (6) as shown in Fig. 4. Because m (total number 

of elements) is 9, the sum of the product of the reference 

individual (local optimal solution) and density matrix of the 

individual of the bar system is 3.5, the result of formula (6) 

will be 5.5.

3.  Multi-objective optimization problem 
method using GA

3.1 Multi-objective optimization problem

Generally, a multi-objective optimization problem can be 

formulated in a discrete form as follows:

6 

solution, can be obtained.  

Formula (6) is used as the objective function of topology optimization using the GA of Step 2. 

However, the computational cost must be investigated. Because formula (6) is a simple sum of the 

products of a matrix, its computational cost will be low. We present an example of formula (6) as 

shown in Fig. 4. Because m (total number of elements) is 9, the sum of the product of the reference 

individual (local optimal solution) and density matrix of the individual of the bar system is 3.5, the 

result of formula (6) will be 5.5. 

3. Multi-objective optimization problem method using GA

3.1 Multi-objective optimization problem 
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Minimize f��                        � � ���� � � �;
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where f� is the objective function, g� is the inequality constraint, h� is the equality constraint 

and �� is the design variable. 

3.2 Elitist non-dominated sorting GA with archiving 

In the multi-load case problem, the elitist non-dominated sorting genetic algorithm (NSGA-IIa) [9] 

which is one of the best known Multi-Objective Evolutionary Algorithms (MOEAs), was used to 

minimize the compliance of each loadcase.  

The flow of NSGA-II is similar to the flow of a common GA [10] as shown in Fig. 5. However, to 

improve diversity and convergence of solutions in this algorithm, the crowding distance metric and 

the crowded tournament selection are introduced. The crowding distance metric is the relative average 

distance to other individuals with the same rank in the objective space. The crowded tournament 

selection is used to compare two individuals and returns the winner of the tournament according to the 

rank and crowding distance between them. Moreover, an elitist strategy was applied to avoid the 

problem of losing Pareto-optimal solutions. If the number of Pareto-solutions exceeds the population 

(7)

where fm is the objective function, gj is the inequality 

constraint, hk is the equality constraint and xi is the design 

variable.

3.2 Elitist non-dominated sorting GA with archiving

In the multi-load case problem, the elitist non-dominated 

sorting genetic algorithm (NSGA-IIa) [9] which is one of 

the best known Multi-Objective Evolutionary Algorithms 

(MOEAs), was used to minimize the compliance of each 

loadcase. 

The flow of NSGA-II is similar to the flow of a common GA 

[10] as shown in Fig. 5. However, to improve diversity and 

convergence of solutions in this algorithm, the crowding 

distance metric and the crowded tournament selection are 

introduced. The crowding distance metric is the relative 

average distance to other individuals with the same rank in 

the objective space. The crowded tournament selection is 

used to compare two individuals and returns the winner of 

the tournament according to the rank and crowding distance 

between them. Moreover, an elitist strategy was applied 

to avoid the problem of losing Pareto-optimal solutions. 

If the number of Pareto-solutions exceeds the population 

size, some Pareto-optimal solutions can be eliminated. 

Therefore, an archiving method was used for the solutions 

preserving method. For the crossover method of a GA, the 

parent centric crossover (PCX) [11] and the binary-like 

crossover [10] methods were applied simultaneously, and 

for the mutation method of a GA, the polynomial mutation 

[12] was applied.

22 

Fig. 4. Calculation example for the proposed objective function Fig. 4.  Calculation example for the proposed objective function
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Fig. 5. Flowchart of the genetic algorithm Fig. 5.  Flowchart of the genetic algorithm
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4. Verification of the proposed method

To verify the efficiency of the proposed method, a simply 

supported beam structure compliance minimization 

problem was used. In this section, the traditional and two 

proposed methods were compared to perform a comparative 

study as follows: 

Method1: Standard random initialization method 

(Traditional method)

Method2: 20×N elite initial population (Proposed method 

with M=20)

Method3: 40×N elite initial population (Proposed method 

with M=40)

where N is the population size of the topology optimization 

using a GA in Step 2 and M is the number of local optimum 

solutions obtained from the SIMP with the weighted sum 

method. For the proposed method, two methods with 

different parameter values for M (the number of local 

optimum solutions) were used to investigate the influence of 

parameter M. Parameter N of Step 2 was set to 50 empirically. 

The N=50 was adequate for finding the various genotypes 

corresponding to one phenotype. Twenty independent runs 

for each method were performed. 

To verify the efficiency of the proposed method in 

the multi-objective topology optimization problem, the 

convergence and diversity were compared using the 

hyper volume ratio (HVR) and Pareto-optimal frontier. 

By using HVR, it was possible to provide a qualitative 

measure of the convergence and diversity of the Pareto-

optimal solutions. Moreover, the computational cost of 

each method was compared to verify the efficiency of the 

proposed method.

4.1  Compliance minimization problem for the simply 
supported beam

A simply supported beam structure as shown in Fig. 6. 

was adopted as the verification problem for the proposed 

method. Figure 6 shows the design domain and bar system 

of the structure. A design domain of 2H×H discretized 

into a 40×20 mesh was used, and the loadings F1=1 and 

F2=1 were assumed. The basic parameters assumed were 

Young’s modulus E=1.0, Poisson’s ratio ρ=0.3, density 

t=1.0, and the thickness of the structure t=1.0. In this 

simulation, a graph with four chain subgraphs was used, 

each of which consisted of seven vertices and six edges 

as shown in Fig. 6. The positions of the starting vertices 

were fixed at the support point and the position of the 

end vertices were fixed at the loading point, and all the 

other vertices were constrained to be within the design 

domain.

For the GA parameters of Step 2, a population size of 50, 

crossover probability of 0.9, and mutation probability of 

0.2 were used. Total number of generations was 100. The 

optimization problem of topology optimization using a GA 

was to minimize formula (6). 

On the other hand, for the Step 3 GA, a population size 

of 100, crossover probability of 0.9, and mutation probability 

of 0.2 were used. The optimization problem of topology 

optimization using a GA was to minimize compliances for 

the given two load cases of the structure with a 0.4 volume 

fraction.

4.2 HVR

Hyper volume is generally used for the qualitative 

measurement of convergence and diversity in a multi-

objective optimization problem [2]. Hyper volume is 

constructed with Pareto-optimal solutions and a reference 

point in the objective space. The reference point was set as a 

vector constructed using worst objective function values. The 

metric HVR is usually introduced to calculate a normalized 

HV value. This HVR is the ratio of the HV of Q and of P* as 

follows. 

8 
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multi-objective optimization problem [2]. Hyper volume is constructed with Pareto-optimal solutions 

and a reference point in the objective space. The reference point was set as a vector constructed using 

worst objective function values. The metric HVR is usually introduced to calculate a normalized HV 

value. This HVR is the ratio of the HV of Q and of P* as follows.  

HV� � HV���
HV���� (8)

where HV(Q) is the HV calculated for the Pareto-optimal solutions and HV(P*) is the maximum 

(ideal) HV value. When Q=P*, HVR=1. If Pareto-optimal solution convergence and diversity are 

improved, HVR is close to 1. For the calculation of HVR in this study, the results of Method 1 

with 600 generations, Method 2 with 300 generations, and Method 3 with 300 generations 

were used as the ideal HV(P*), because generally the ideal HV(P*) of a formula (8) is not 

obvious.

(8)

where HV(Q) is the HV calculated for the Pareto-optimal 

solutions and HV(P*) is the maximum (ideal) HV value. 

When Q=P*, HVR=1. If Pareto-optimal solution convergence 

and diversity are improved, HVR is close to 1. For the 

calculation of HVR in this study, the results of Method 

1 with 600 generations, Method 2 with 300 generations, 

and Method 3 with 300 generations were used as the ideal 
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Fig. 6. Design domain and bar system for the simply supported beam 
Fig. 6.  Design domain and bar system for the simply supported beam
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HV(P*), because generally the ideal HV(P*) of a formula (8) 

is not obvious. 

5. Result of verification

5.1 Computational cost

Table 1 shows the average number of evaluations of 

the objective function per single GA trial and the average 

evaluation time of the objective function per single 

evaluation. In Table 1, the average number of evaluations of 

compliance was calculated, because the SIMP with weighted 

sum method of Step 1 was used until convergence and might 

have obtained different solutions if choosing different initial 

value. Because the GA in Step 2 was implemented up to 50 

generations with 100 populations, the number of evaluations 

of formula (6) at Step 2 can be calculated as 50 (total number 

of generations) × 100 (population) × M (the number of local 

optimum solutions in Step1). Therefore when M=20 and 

M=40, the number of evaluations of formula (6) at Step 2 

Table 1.  Average number of objective function evaluations per single GA trial and average evaluation time for the objective function (40×20 
meshed beam)

16 

Originals of tables used in the text (each on a separate sheet). 

Table 1. Average number of objective function evaluations per single GA trial and average evaluation 
times for the objective function (40×20 meshed beam)

 Traditional M=20 M=40 
Compliance1 and 2 at Step1 - 66 137 
Formula(6) at Step2 - 100,000 200,000 
Compliance1 and 2 at Step3 30,000 30,000 30,000 
 Average Time[sec/single evaluation] 
Formula(6) 0.00004 
Compliance1, 2 0.07 

Table 2.  Computational time

17 

Table 2. Computational times
Unit: second

Traditional 
method

Proposed
method, M=20

Proposed
method, M=40

Local optimum solutions for Step 1 - 4.62 9.59 

Formula (6) for Step 2 - 4 8 

Compliance1 and 2 of Step 3 2100 2100 2100 

25 

Fig. 7. Comparison of the computational time Fig. 7. Comparison of the computational time
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were 100,000 and 200,000, respectively. In Step 3, the GA was 

implemented up to 300 generations with 100 populations. 

Thus the number of evaluations of compliance 1 and 2 at 

Step 3 was 30,000 when the total number of generation was 

300.

In the case of the 40×20 meshed model, formula (6) and 

compliance 1, 2 average calculation times were 0.00004 and 

0.07 s, respectively, and all the CPU times were measured on 

a desktop computer with a 2.8 GHz Intel Core i7 processor 

clock speed.

Table 2 and Fig. 7 show the total computation time for 

each method (methods 1-3). As shown in Table 2 and Fig. 7, 

the additional computation times for the proposed method 

(the cost of Steps 1 and 2) for M=20 and M=40 were not large. 

When M=20 and M=40, the additional computation times 

of Step 1 of the proposed method were 4.62 and 9.59 s, and 

the additional computation times of Step 2 of the proposed 

method were 4 and 8 s. This additional computation time 

for the proposed method was negligible compared with that 

for the GA in Step 2, because the GA of Step 3 usually has a 

higher computational cost than a gradient-based algorithm 

such as SIMP, which was used in Step 1. Moreover, because 

formula (6) is the simple sum of the products of a matrix, the 

Step 2 GA computational cost was very low, as shown in Fig. 

7. Therefore, the computational cost of the proposed method 

was almost equal to that of the traditional method.

5.2  Convergence and diversity of Pareto-optimal 
solutions

In this study, to verify the convergence and diversity of 

Pareto-optimal solutions, the HVR was used. Fig. 8 shows 

the comparison of the HVR of the Pareto-optimal solutions 

of Step 3. In Fig. 8, HVR was calculated from the result 

of the topology optimization of the GA with 300 evolved 

generations. The HVR results obtained from the traditional 

method with 400, 500, and 600 evolved generations are also 

shown in Table 3.

In Fig. 8, it is observed that the average (AVG) and the 

maximum (MAX) of HVR when M=20 and M=40 are much 

closer to 1 than the result for the traditional method, even 

when 600 generations have evolved. This shows that the 

Pareto-optimal solutions obtained from the proposed 

method has better convergence and diversity than the 

traditional method. Moreover, the variance of HVR in Table 

3 shows that both variances of the proposed method (M=20, 

Table 3.  Results for the Hyper Volume Ratio

18 

Table 3. Result of Hyper Volume Ratio 
Traditional method Proposed method 

Standard random initialization M=20 M=40

Generation 300 400 500 600 300 300 

AVG 0.9683 0.9775 0.9826 0.9856 0.9982 0.9987 

MAX 0.9920 0.9955 0.9960 0.9972 0.9990 0.9991 

MIN 0.9286 0.9425 0.9470 0.9550 0.9976 0.9983 

VAR 3.29E-04 2.59E-04 2.12E-04 1.64E-04 1.30E-07 7.45E-08 26 

Fig. 8. Comparison of average, maximum and minimum HVR with 300 generations 
Fig. 8. Comparison of average, maximum and minimum HVR with 300 generations
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M=40) were smaller than for the traditional method. This 

means that the convergence ability of the proposed method 

for global solutions was more stable than for the traditional 

method. These results show that the proposed method 

has better convergence ability and more diverse Pareto-

optimal solutions with almost the same computational cost 

as the traditional method, implying that the efficiency of 

the proposed method was greater than for the traditional 

method.

Next, we investigated the influence of the parameter M 

(the number of the local optimum solution in Step 1), which 

was introduced for the elite initial population construction. 

To investigate the influence of the parameter M, the results of 

the proposed method with M=20 and M=40 were compared. 

By comparing the average and maximum of HVR from 

Table 3, we observed that the average and maximums value 

for M=40 were higher than the results for M=20, implying that 

if the number of local optimum solutions for M increases, 

varied and more converged Pareto-optimal solutions can 

be found. Since parameter M was the number of local 

optimal solutions for Step 1, it related to the diversity of 

the phenotypes of the elite initial population. Thus if a high 

value of M is introduced, more varied phenotypes can be 

generated. Therefore, the parameter M affects the diversity 

of the elite initial population. 

On the other hand, if parameter M increases, some very 

similar topologies may be obtained in Step 1, because some 

phenotypes overlap in Step 1. However, even when similar 

phenotypes are used in Step 2, different genotypes can be 

obtained in Step 2. For example, as shown in Fig. 9, two 

different genotypes correspond to the same phenotype. 

Thus, more varied genotypes can be introduced in spite of 

27 

Fig. 9. An example of evolution direction of genotypes that have the same phenotype Fig. 9. An example of evolution direction of genotypes that have the same phenotype
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(a) Pareto frontier for each method with 300 GA generations 

        

28 

(a) Pareto frontier for each method with 300 GA generations 

               (a) Pareto frontier for each method with 300 GA generations              (b)  Pareto frontier for traditional method with 300, 400, 500, 600 gen-
erations and Proposed method with M=40 and 300 GA generations

Fig. 10. Results for the Pareto frontier
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the overlapping of phenotypes in Step 1. Moreover, various 

genotypes in the GA lead to more converged and diverse 

Pareto-optimal solutions in Step 3, because different 

genotypes that have the same phenotype evolve in different 

directions as shown in Fig. 9. However, a high M parameter 

leads to increased computational cost. Thus a balance needs 

to be found between the results for Pareto-optimal solutions 

and the computational cost.

The results of the traditional and proposed methods 

(M=20, M=40) are compared in Fig. 9(a). The traditional 

method with 300, 400 and 500 generations, and the proposed 

method (M=40) with 300 generations, were compared in Fig. 

9(b). 

Figure 10 shows the result of the Pareto frontier. In Fig. 

10(a), if the traditional and proposed methods have the 

same computational cost for Step 3, the proposed method 

with M=40 has more convergent results than the traditional 

and proposed methods with M=20. In Fig. 10(b), we 

observed that when the maximum number of evolution 

generations for the traditional method was increased from 

300 to 600, its Pareto frontier asymptotically approaches 

the Pareto frontier of the proposed method with M=40. This 

result can be also described quantitatively by the average 

and maximum HVR as shown in Table 3. These results 

imply that the proposed method had better convergence 

ability, because the additional computational cost was 

negligible.

Figure 11 shows the results for the topology obtained by 

the proposed method with M=40 and 300 generations. In 

Fig. 11, we found that structurally proper topologies were 

obtained for the Pareto-optimal solutions by the proposed 

method.

Although the proposed method had some additional 

calculation cost for generating the elite initial population in 

Steps 1 and 2, we established that the overall computational 

efficiency of topology optimization using a GA can be greatly 

improved when compared to the traditional method.

6. Conclusions

In this study, for efficient multi-objective topology 

optimization using a GA with bar-system representation, 

local optimum solutions obtained from the SIMP with 

weighted sum method were used as an elite initial population 

for the GA. To verify the efficiency of the proposed method, 

the traditional method with standard random initialization 

and the proposed method were compared using the simply 

supported beam example, and the HVR was calculated to 

investigate the convergence and diversity of Pareto-optimal 

solutions. As a result, the proposed method performed better 

than the traditional method for the average, maximum and 

variance of HVR measured by Pareto-optimal solutions and 

the Pareto-frontier, with almost the same computational cost 

as the traditional method. 
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