• Title/Summary/Keyword: Generalized connection

Search Result 124, Processing Time 0.025 seconds

SOME RESULTS ON PROJECTIVE CURVATURE TENSOR IN SASAKIAN MANIFOLDS

  • Gautam, Umesh Kumar;Haseeb, Abdul;Prasad, Rajendra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.881-896
    • /
    • 2019
  • In the present paper, we study certain curvature conditions satisfying by the projective curvature tensor in Sasakian manifolds with respect to the generalized-Tanaka-Webster connection. Finally, we give an example of a 3-dimensional Sasakian manifold with respect to the generalized-Tanaka-Webster connection.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

GEOMETRIC CHARACTERISTICS OF GENERIC LIGHTLIKE SUBMANIFOLDS

  • Jha, Nand Kishor;Pruthi, Megha;Kumar, Sangeet;Kaur, Jatinder
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.179-194
    • /
    • 2022
  • In the present study, we investigate generic lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving the existence of generic lightlike submanifolds in an indefinite generalized complex space form, a non-trivial example of this class of submanifolds is discussed. Then, we find a characterization theorem enabling the induced connection on a generic lightlike submanifold to be a metric connection. We also derive some conditions for the integrability of distributions defined on generic lightlike submanifolds. Further, we discuss the non-existence of mixed geodesic generic lightlike submanifolds in a generalized complex space form. Finally, we investigate totally umbilical generic lightlike submanifolds and minimal generic lightlike submanifolds of an indefinite nearly Kaehler manifold.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS I. THE RECURRENCE RELATIONS IN 8-g-UFT

  • HWANG, IN HO;CHUNG, KYUNG TAE;HAN, SOO KYUNG
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.605-639
    • /
    • 2006
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2,3,4,5,6,7. This paper is the first part of the following series of two papers, in which we obtain a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, with main emphasis on the derivation of powerful and useful recurrence relations which hold in 8-dimensional Einstein's unified field theory(i.e., 8-g-UFT): I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT All considerations in these papers are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$.

  • PDF

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE FIRST CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • Hwang, In-Ho;Han, Soo-Kyung;Chung, Kyung-Tae
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein 's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the first class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the cases of the second class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

EIGHT-DIMENSIONAL EINSTEIN'S CONNECTION FOR THE SECOND CLASS II. THE EINSTEIN'S CONNECTION IN 8-g-UFT

  • HAN, SOO KYUNG;HWANG, IN HO;CHUNG, KYUNG TAE
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.131-140
    • /
    • 2005
  • Lower dimensional cases of Einstein's connection were already investigated by many authors for n = 2, 3, 4, 5, 6, 7. In the following series of two papers, we present a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor: I. The recurrence relations in 8-g-UFT II. The Einstein's connection in 8-g-UFT In our previous paper [1], we investigated some algebraic structure in Einstein's 8-dimensional unified field theory (i.e., 8-g-UFT), with emphasis on the derivation of the recurrence relations of the third kind which hold in 8-g-UFT. This paper is a direct continuation of [1]. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 8-g-UFT and to display a surveyable tensorial representation of 8-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations of the third kind obtained in the first paper [1]. All considerations in this paper are restricted to the second class only of the generalized 8-dimensional Riemannian manifold $X_8$, since the case of the first class are done in [2], [3] and the case of the third class, the simplest case, was already studied by many authors.

  • PDF

ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION

  • Ichijyo, Yoshihiro;Lee, Il-Yong;Park, Hong-Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.369-378
    • /
    • 2004
  • A canonical Finsler connection Nr is defined by a generalized Finsler structure called a (G, N)-structure, where G is a generalized Finsler metric and N is a nonlinear connection given in a differentiable manifold, respectively. If NT is linear, then the(G, N)-structure has a linearity in a sense and is called Berwaldian. In the present paper, we discuss what it means that NT is with a vanishing hv-torsion: ${P^{i}}\;_{jk}\;=\;0$ and introduce the notion of a stronger type for linearity of a (G, N)-structure. For important examples, we finally investigate the cases of a Finsler manifold and a Rizza manifold.

EXACTNESS THEOREM AND POOR M-COSEQUENCES

  • Khashyarmanesh, K.;Salarian, Sh.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.949-957
    • /
    • 1997
  • The purpose of this paper is to establish connection between certain complex of modules of generalized fractions and the concept of cosequence in commutative algebra. The main theorem of the paper leads to characterization, in terms of modules of generalized fractions, of regular (co) sequences.

  • PDF

VECTORIAL LINEAR CONNECTIONS

  • Hwajeong Kim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.163-169
    • /
    • 2023
  • In this article, we consider a vectorial linear connection which is determined by three fixed vector fields. Classifying these vectorial connections, we obtain a new type of generalized statistical manifolds which allow non-zero torsion.