• Title/Summary/Keyword: Generalized Pareto distribution

검색결과 64건 처리시간 0.02초

RECURRENCE RELATIONS FOR QUOTIENT MOMENTS OF GENERALIZED PARETO DISTRIBUTION BASED ON GENERALIZED ORDER STATISTICS AND CHARACTERIZATION

  • Kumar, Devendra
    • 충청수학회지
    • /
    • 제27권3호
    • /
    • pp.347-361
    • /
    • 2014
  • Generalized Pareto distribution play an important role in reliability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto or Lomax distribution. In this paper, we established exact expressions and recurrence relations satised by the quotient moments of generalized order statistics for a generalized Pareto distribution. Further the results for quotient moments of order statistics and records are deduced from the relations obtained and a theorem for characterizing this distribution is presented.

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.

Noninformative priors for the scale parameter in the generalized Pareto distribution

  • Kang, Sang Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권6호
    • /
    • pp.1521-1529
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the scale parameter is of interest. We developed the rst order and the second order matching priors. We revealed that the second order matching prior does not exist. It turns out that the reference prior and Jeffrey's prior do not satisfy a first order matching criterion, and Jeffreys' prior, the reference prior and the matching prior are different. Some simulation study is performed and a real example is given.

The Likelihood for a Two-Dimensional Poisson Exceedance Point Process Model

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • 제15권5호
    • /
    • pp.793-798
    • /
    • 2008
  • Extreme value inference deals with fitting the generalized extreme value distribution model and the generalized Pareto distribution model, which are recently combined to give a single model, namely a two-dimensional non-homogeneous Poisson exceedance point process model. In this paper, we extend the two-dimensional non-homogeneous Poisson process model to include non-stationary effect or dependence on covariates and then derive the likelihood for the extended model.

Estimating exponentiated parameter and distribution of quotient and ratio in an exponentiated Pareto

  • Moon, Yeung-Gil;Lee, Chang-Soo;Kang, Jun-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.967-972
    • /
    • 2010
  • We shall consider estimations of an exponetiated parameter of the exponentiated Pareto distribution with known scale and threshold parameters. A quotient distribution of two independent exponentiated Pareto random variables is obtained. We also derive the distribution of the ratio of two independent exponentiated Pareto random variables.

극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로) (Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method))

  • 우지용;김명석
    • Communications for Statistical Applications and Methods
    • /
    • 제16권3호
    • /
    • pp.463-477
    • /
    • 2009
  • 극단치 분포의 모수 추정방법으로 최우추정법, 확률가중적률법, 회귀분석법은 기존 연구에서 활발하게 적용되어져 왔다. 그러나 이들 세 가지 추정방법 가운데, 회귀분석법의 우수성은 엄격하게 평가되어진 적이 없다. 본 논문에서는 몬테칼로 시뮬레이션을 통하여 Generalized Extreme Value(GEV) 분포와 Generalized Pareto(GP) 분포의 모수 추정에 회귀분석법 및 다른 추정방법을 적용하여 비교 연구한다. 시뮬레이션 결과, 표본의 크기가 작은 경우 회귀분석 법은 GEV 분포의 위치모수 추정시 편의 측면과 효율성 측면에서 다른 방법보다 우수한 경향을 나타내었다. GP 분포의 규모모수 추정시에는 표본의 크기 가 작을 경우 회귀분석법이 다른 방법보다 작은 편의를 나타내었다. 회귀분석법은 표본의 크기 가 작거나 적당히 큰 경우에도 GEV 분포나 GP 분포의 형태모수 추정시에 형태모수의 값이 -0.4일 경우, 다른 방법보다 우수한 경향을 나타내었다.

한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석 (A Bayesian Analysis of Return Level for Extreme Precipitation in Korea)

  • 이정진;김남희;권혜지;김용구
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.947-958
    • /
    • 2014
  • 집중호우의 특성을 이해하는 것은 수문관리 및 재해방재 등에서 매우 중요하다. 특히 반환주기는 이러한 집중호우의 특성을 나타내는 측정치로 자주 사용된다. 본 논문에서는 베이지안 계층적 모형을 이용하여 강우의 반환주기에 대한 공간구조를 분석하였다. 먼저 국내 62개 지점에서 측정한 강우 강도을 기초로 하여 연간 일일 최대강우량과 특정한 수준을 초과하는 강우량에 대해서 generalized extreme value(GEV)와 generalized Pareto distribution(GPD)를 각각 가정하여 추정하였다. 집중호우 반환주기에 대한 공간구조는 이 GEV 분포와 GPD 분포의 모수에 공간구조를 가지는 다변량 정규분포를 이용하여 설명하였다. 제안된 모형을 국내 76개 지역에서 39년간 측정된 일별 강우량 관측자료에 적용하였다.

일반화 파레토 분포에서 임계치 결정에 대한 대안적 연구 (An Alternative Study of the Determination of the Threshold for the Generalized Pareto Distribution)

  • 윤정연;조재범;정병철
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.931-939
    • /
    • 2011
  • 일반적으로 일반화 파레토 분포(Generalized Pareto Distribution; GPD)에서 임계치를 결정하는 방법으로는 MEF-그래프나 Hill-그래프를 통한 주관적인 판단을 이용한다는 약점이 존재한다. 본 연구에서는 이와 같은 기존 방법의 약점을 해결하기 위하여 GPD에서 임계치를 결정하는 방법으로 로버스트 추정량을 이용하는 새로운 접근 방법을 제안하였다. 더불어 1987년 1월 5일부터 2009년 8월 3일까지 공시된 KOSPI지수의 일별수익률의 손실부분에 해당하는 왼쪽꼬리부분을 이용하여 실증분석을 실시하였다. 실증분석은 기존의 그래프를 이용한 임계치 결정방법과 본 연구에서 제안한 방법에서 계산된 VaR이 어떤 차이가 존재하는가를 알아보는 방법으로 실시되었다. 분석결과 본 논문에서 제안한 임계치 결정방법에 의하여 계산된 VaR값들은 기존 방법의 VaR과 큰 차이를 보이지 않았다. 아울러 본 연구에서 제안한 임계치 결정방법의 안정성을 파악한 결과 기존 방법과 큰 차이를 보이지 않았다. 이와 같은 결과들을 토대로 본 연구에서 제안한 로버스트 추정량을 이용한 임계치 결정방법은 기존의 그래프를 이용한 주관적인 임계치 결정방법에 대한 대안적인 방법으로 충분히 고려될 수 있을 것으로 생각된다.

Noninformative priors for the shape parameter in the generalized Pareto distribution

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.171-178
    • /
    • 2013
  • In this paper, we develop noninformative priors for the generalized Pareto distribution when the parameter of interest is the shape parameter. We developed the first order and the second order matching priors.We revealed that the second order matching prior does not exist. It turns out that the reference prior satisfies a first order matching criterion, but Jeffrey's prior is not a first order matching prior. Some simulation study is performed and a real example is given.